基本方程
关键等式(利用行列式和特征值的关系)
λ 1 + λ 2 + λ 3 = a 11 + a 22 + a 33 \lambda_1+\lambda_2+\lambda_3=a_{11}+a_{22}+a_{33} λ1+λ2+λ3=a11+a22+a33 .
λ 1 ⋅ λ 2 ⋅ λ 3 = ∣ A ∣ \lambda_1\cdot\lambda_2\cdot\lambda_3=|A| λ1⋅λ2⋅λ3=∣A∣ .
λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 = A 11 + A 22 + A 33 \lambda_1\lambda_2+\lambda_1\lambda_3+\lambda_2\lambda_3=A_{11}+A_{22}+A_{33} λ1λ2+λ1λ3+λ2λ3=A11+A22+A33 .