• 计算机竞赛 深度学习人脸表情识别算法 - opencv python 机器视觉


    0 前言

    🔥 优质竞赛项目系列,今天要分享的是

    🚩 深度学习人脸表情识别系统

    该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

    🥇学长这里给一个题目综合评分(每项满分5分)

    • 难度系数:3分
    • 工作量:3分
    • 创新点:4分

    🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

    1 技术介绍

    1.1 技术概括

    面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
    (sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

    尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

    在这里插入图片描述

    1.2 目前表情识别实现技术

    在这里插入图片描述
    在这里插入图片描述

    2 实现效果

    废话不多说,先上实现效果

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述

    3 深度学习表情识别实现过程

    3.1 网络架构

    在这里插入图片描述
    面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

    其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

    在这里插入图片描述

    3.2 数据

    主要来源于kaggle比赛,下载地址。
    有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
    数据是48x48 灰度图,格式比较奇葩。
    第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

    在这里插入图片描述

    3.3 实现流程

    在这里插入图片描述

    3.4 部分实现代码

    
    
        import cv2
        import sys
        import json
        import numpy as np
        from keras.models import model_from_json
    
        emotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']
        cascPath = sys.argv[1]
        
        faceCascade = cv2.CascadeClassifier(cascPath)
        noseCascade = cv2.CascadeClassifier(cascPath)
    
        # load json and create model arch
        json_file = open('model.json','r')
        loaded_model_json = json_file.read()
        json_file.close()
        model = model_from_json(loaded_model_json)
        
        # load weights into new model
        model.load_weights('model.h5')
        
        # overlay meme face
        def overlay_memeface(probs):
            if max(probs) > 0.8:
                emotion = emotions[np.argmax(probs)]
                return 'meme_faces/{}-{}.png'.format(emotion, emotion)
            else:
                index1, index2 = np.argsort(probs)[::-1][:2]
                emotion1 = emotions[index1]
                emotion2 = emotions[index2]
                return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)
        
        def predict_emotion(face_image_gray): # a single cropped face
            resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
            # cv2.imwrite(str(index)+'.png', resized_img)
            image = resized_img.reshape(1, 1, 48, 48)
            list_of_list = model.predict(image, batch_size=1, verbose=1)
            angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
            return [angry, fear, happy, sad, surprise, neutral]
        
        video_capture = cv2.VideoCapture(0)
        while True:
            # Capture frame-by-frame
            ret, frame = video_capture.read()
        
            img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)
    
            faces = faceCascade.detectMultiScale(
                img_gray,
                scaleFactor=1.1,
                minNeighbors=5,
                minSize=(30, 30),
                flags=cv2.cv.CV_HAAR_SCALE_IMAGE
            )
        
            # Draw a rectangle around the faces
            for (x, y, w, h) in faces:
        
                face_image_gray = img_gray[y:y+h, x:x+w]
                filename = overlay_memeface(predict_emotion(face_image_gray))
        
                print filename
                meme = cv2.imread(filename,-1)
                # meme = (meme/256).astype('uint8')
                try:
                    meme.shape[2]
                except:
                    meme = meme.reshape(meme.shape[0], meme.shape[1], 1)
                # print meme.dtype
                # print meme.shape
                orig_mask = meme[:,:,3]
                # print orig_mask.shape
                # memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)
                ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)
                orig_mask_inv = cv2.bitwise_not(orig_mask)
                meme = meme[:,:,0:3]
                origMustacheHeight, origMustacheWidth = meme.shape[:2]
        
                roi_gray = img_gray[y:y+h, x:x+w]
                roi_color = frame[y:y+h, x:x+w]
        
                # Detect a nose within the region bounded by each face (the ROI)
                nose = noseCascade.detectMultiScale(roi_gray)
        
                for (nx,ny,nw,nh) in nose:
                    # Un-comment the next line for debug (draw box around the nose)
                    #cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)
        
                    # The mustache should be three times the width of the nose
                    mustacheWidth =  20 * nw
                    mustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth
        
                    # Center the mustache on the bottom of the nose
                    x1 = nx - (mustacheWidth/4)
                    x2 = nx + nw + (mustacheWidth/4)
                    y1 = ny + nh - (mustacheHeight/2)
                    y2 = ny + nh + (mustacheHeight/2)
        
                    # Check for clipping
                    if x1 < 0:
                        x1 = 0
                    if y1 < 0:
                        y1 = 0
                    if x2 > w:
                        x2 = w
                    if y2 > h:
                        y2 = h
    
                    # Re-calculate the width and height of the mustache image
                    mustacheWidth = (x2 - x1)
                    mustacheHeight = (y2 - y1)
        
                    # Re-size the original image and the masks to the mustache sizes
                    # calcualted above
                    mustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)
                    mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)
                    mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)
        
                    # take ROI for mustache from background equal to size of mustache image
                    roi = roi_color[y1:y2, x1:x2]
        
                    # roi_bg contains the original image only where the mustache is not
                    # in the region that is the size of the mustache.
                    roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)
        
                    # roi_fg contains the image of the mustache only where the mustache is
                    roi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)
        
                    # join the roi_bg and roi_fg
                    dst = cv2.add(roi_bg,roi_fg)
        
                    # place the joined image, saved to dst back over the original image
                    roi_color[y1:y2, x1:x2] = dst
        
                    break
        
            #     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
            #     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
            #     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)
            #     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)
            #
            # cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)
            # cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)
        
            # Display the resulting frame
            cv2.imshow('Video', frame)
        
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        
        # When everything is done, release the capture
        video_capture.release()
        cv2.destroyAllWindows()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156

    需要完整代码以及学长训练好的模型,联系学长获取

    4 最后

    🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

  • 相关阅读:
    selenium自动化测试神器
    XXL-job-oracle 版本
    html中的爱心小特效。
    【华为机试真题 Python实现】火星文计算【2022 Q1 Q2 | 100分】
    Mysql系列一:事物概念及特性
    CSS实现文字跑马灯效果
    Linux之ansible(使用角色部署http服务)
    vue3.0新特性学习笔记
    想掌握vue模板语法?两篇就够了!(上)
    【论文考古】量化SGD QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
  • 原文地址:https://blog.csdn.net/m0_43533/article/details/133309189