import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate 10,000 random theta values from U([0, 1])
n =10000
theta_values = np.random.rand(n)# Define the function to compute weights for a given thetadefcompute_weight(theta):return((2+ theta)**125)*((1- theta)**38)*(theta **34)# Compute the weights for all theta values
weights = np.array([compute_weight(theta)for theta in theta_values])# Normalize the weights to make them probabilities
weights /= np.sum(weights)# Step 2: Resample theta values based on the computed weights
resampled_theta_values = np.random.choice(theta_values, size=n, p=weights)# Plot a histogram of the resampled theta values
plt.hist(resampled_theta_values, bins=50, density=True, alpha=0.7)
plt.title("Histogram of Resampled Theta Values")
plt.xlabel("Theta")
plt.ylabel("Frequency")
plt.show()