• Flink的部署模式:Local模式、Standalone模式、Flink On Yarn模式


    Flink部署、执行模式

    Flink的部署模式

    本地模式、Standalone模式和FlinkonYARN模式是Flink的三种常见部署模式。

    1.Local本地模式:

    在本地模式下,Flink以单机模式运行,无需启动分布式资源管理器。这种模式适用于本地开发和测试,用于验证Flink代码的正确性和性能。

    2.Standalone模式:

    在Standalone模式下,Flink作为一个独立的集群运行。需要启动Flink的JobManager和TaskManager,JobManager负责接收和调度任务,而TaskManager负责执行任务。

    3.Flink on YARN模式:

    在FlinkonYARN模式下,Flink在YARN(Hadoop的资源调度和集群管理系统)之上运行。Flink作为一个YARN应用程序,利用YARN来管理资源分配和任务调度。使用这种模式,可以充分利用Hadoop集群的资源,实现Flink的分布式计算。

    Flink的执行模式

    Flink可以通过以下三种方式之一执行应用程序:

    1.Session Mode:会话模式

    会话模式需要先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。集群启动时所有资源就都已经确定,所有提交的作业会竞争集群中的资源。适合任务规模小,执行时间短的大量作业。

    Flink的作业执行环境会一直保留在集群上,直到会话被显式终止。这样,可以提交多个作业,它们可以共享相同的集群资源和状态,从而实现更高的效率和资源利用。

    2.Per-Job Mode:单作业模式

    每个Flink应用程序作为一个独立的作业被提交和执行。

    每次提交的Flink应用程序都会创建一个独立的作业执行环境,该作业执行环境仅用于执行该特定的作业。

    当作业完成后,作业执行环境会被释放,集群关闭,资源释放

    3.Application Mode:应用模式

    应用模式算是前2种模式的升级,前2种模式中,Flink程序代码是在客户端执行,然后客户端提交给JobManager,客户端需要占用大量网络带宽。

    应用模式需要为每一个提交的应用单独启动一个JobManager(应用程序在JobManager执行),也就是创建一个集群。这个JobManager只为执行这一个应用而存在,执行结束之后JobManager关闭。

    4.三种模式的区别:

    集群生命周期和资源隔离保证
    
    应用程序的main()方法是在客户端还是在集群上执行
    
    • 1
    • 2
    • 3

    在这里插入图片描述

    Local本地模式

    Local模式是Flink提供的最简单部署模式,可以在单台服务器上运行,适用于日常的开发和调试。

    注意:Flink的运行依赖JAVA环境,需要预先安装好JDK

    下载安装

    Flink下载地址: https://archive.apache.org/dist/flink/

    下载Flink

    wget https://repo.huaweicloud.com/apache/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz
    
    • 1

    解压、重命名

    tar  -zxvf flink-1.17.0-bin-scala_2.12.tgz 
    
    mv flink-1.17.0 flink
    
    • 1
    • 2
    • 3

    启动、停止Flink

    不需要进行任何配置,直接使用Flink默认配置,直接运行脚本启动

    bin/start-cluster.sh
    
    • 1

    停止Flink

    bin/stop-cluster.sh
    
    • 1

    直接访问:http://IP:8081,可以看到Flink的后台管理界面

    每个taskmanager有3个solt

    在这里插入图片描述

    提交测试任务

    提交一个测试任务:

    ./bin/flink run examples/batch/WordCount.jar
    
    • 1

    在控制台直接看到输出

    [root@node01 flink]# ./bin/flink run examples/batch/WordCount.jar
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/usr/local/program/flink/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/usr/local/program/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
    Executing WordCount example with default input data set.
    Use --input to specify file input.
    Printing result to stdout. Use --output to specify output path.
    Job has been submitted with JobID a946d0abf84ac6848a823cec43f7056f
    Program execution finished
    Job with JobID a946d0abf84ac6848a823cec43f7056f has finished.
    Job Runtime: 584 ms
    Accumulator Results: 
    - 1a50b4c9582d4d35a854872c62391768 (java.util.ArrayList) [170 elements]
    
    
    (a,5)
    (action,1)
    (after,1)
    (against,1)
    (all,2)
    (and,12)
    (arms,1)
    (arrows,1)
    (awry,1)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    同样,在Flink的后台管理界面 Completed Jobs 一栏可以看到刚才提交执行的程序:
    在这里插入图片描述

    停止作业

    可以直接在 WEB 界面上点击对应作业的 Cancel Job 按钮进行取消,也可以使用命令行进行取消。

    使用命令行进行取消时,需要先获取到作业的JobId

    bin/flink list
    
    • 1

    获取到JobId后,使用flink cancel JobId命令取消作业

    bin/flink cancel a946d0abf84ac6848a823cec43f7056f
    
    • 1

    Standalone独立模式

    Standalone模式是集群模式的一种,独立模式是独立运行的,不依赖任何外部的资源管理平台,存在资源不足,出现故障不会自动扩展或重分配资源的能力,一般用在开发测试或作业非常少的场景下。

    优缺点:

    部署相对简单,可以支持小规模,少量的任务运行
    
    缺少系统层面对集群中Job的管理,容易遭成资源分配不均匀
    
    资源隔离相对简单,任务之间资源竞争严重
    
    • 1
    • 2
    • 3
    • 4
    • 5

    会话模式

    会话模式部署需要先启动集群,集群资源固定,通过Web页面客户端提交任务,可以多个任务。

    搭建一个Flink集群,参考:搭建Flink集群、集群HA高可用以及配置历史服务器

    1.启动 Flink 集群:

    通过bin/start-cluster.sh脚本启动集群

    2.打开Flink Web UI

    在浏览器中输入http://node01:8081/地址打开Flink Web UI

    3.提交Flink作业

    在Flink Web UI中选择要提交的 Flink 作业 jar 包,并指定作业参数和作业名称。

    bin/flink run ../examples/streaming/WordCount.jar
    
    • 1

    4.查看Flink作业

    提交作业之后,在 Flink Web UI 上会看到作业的运行状态,可以查看作业日志和监控指标等信息。

    5.停止Flink作业

    可以在Flink Web UI中停止作业,也可以使用bin/flink cancel jobID命令停止指定的作业

    单作业模式

    Standalone集群并不支持单作业模式部署,单作业模式需要借助一些资源管理平台。

    应用模式

    应用模式下不会提前创建集群,因此不能调用start-cluster.sh脚本,但是可以使用在bin目录下的standalone-job.sh来创建一个JobManager。

    1.将Flink应用程序的jar包放到Flink的安装路径下的lib目录下。

    [root@node01 flink]# mv /root/demo-1.0-SNAPSHOT.jar  lib
    
    • 1

    2.启动netcat

    [root@node01 ~]# nc -lk 8888
    
    • 1

    3.启动JobManager

    直接指定作业入口类,脚本会到lib目录扫描所有的jar包

    [root@node01 flink]# bin/standalone-job.sh start --job-classname cn.ybzy.demo.WordCountDemo  
    Starting standalonejob daemon on host node01.
    
    • 1
    • 2

    4.启动TaskManager

    [root@node01 flink]# bin/taskmanager.sh start
    Starting taskexecutor daemon on host node01.
    
    • 1
    • 2

    5.查看进程

    [root@node01 flink]# jps
    11973 Jps
    11240 TaskManagerRunner
    11898 StandaloneApplicationClusterEntryPoint
    
    • 1
    • 2
    • 3
    • 4

    6.查看Web UI
    在这里插入图片描述
    一直是如下所示状态,明显异常:
    在这里插入图片描述
    查看flink/log/flink-root-standalonejob-1-node01.log日志

    1.异常提示资源不够:

    Caused by: java.util.concurrent.CompletionException: org.apache.flink.runtime.jobmanager.scheduler.NoResourceAvailableException: Could not acquire the minimum required resources.
            at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:292) ~[?:1.8.0_371]
            at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:308) ~[?:1.8.0_371]
            at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:607) ~[?:1.8.0_371]
            at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:591) ~[?:1.8.0_371]
            at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488) ~[?:1.8.0_371]
            at java.util.concurrent.CompletableFuture.completeExceptionally(CompletableFuture.java:1990) ~[?:1.8.0_371]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    修改配置文件,调大资源,发现无效。

    # jobmanager.memory.process.size: 1600m
    jobmanager.memory.process.size: 2000m
    
    #taskmanager.memory.process.size: 1728m
    taskmanager.memory.process.size: 2600m
    
    • 1
    • 2
    • 3
    • 4
    • 5

    后来仔细观察日志,发现一处核心异常如下异常:

     org.apache.flink.runtime.resourcemanager.slotmanager.DeclarativeSlotManager [] - Received resource requirements from job 6f4f54c45d7bb59531f537b966776793: [ResourceRequirement{resourceProfile=ResourceProfile{UNKNOWN}, numberOfRequiredSlots=3}]
    
    • 1

    关键词numberOfRequiredSlots=3尤为重要,JobManager启动默认只有1Slot,Slot请求资源不够!

    编辑conf/flink-conf.yaml文件

    # taskmanager.numberOfTaskSlots: 1
    # 修改Slot数量为3
    taskmanager.numberOfTaskSlots: 3
    
    • 1
    • 2
    • 3

    停止taskmanager、standalone-job,重新启动,Web UI显示明显正常
    在这里插入图片描述
    在这里插入图片描述
    发送测试数据

    [root@node01 ~]# nc -lk 8888
    abc bcd cdf
    
    • 1
    • 2

    在这里插入图片描述

    7.停止集群

    [root@node01 flink]# bin/taskmanager.sh stop
    Stopping taskexecutor daemon (pid: 14117) on host node01.
    [root@node01 flink]# bin/standalone-job.sh stop
    No standalonejob daemon (pid: 14813) is running anymore on node01.
    
    • 1
    • 2
    • 3
    • 4

    8.总结:

    在Flink中,Slot是Flink作业管理的资源基本单位,一个任务不一定会占用1个Slot。

    当向Flink提交一个任务时,Flink会为该任务分配所需的Slot数量。通常取决于以下几个因素:

    任务的并行度(Parallelism):如果任务的并行度很高,即需要同时执行多个子任务,则可能需要使用多个Slot。
    
    TaskManager的资源:如果TaskManager的资源非常丰富,例如拥有多个CPU或GPU核心,则可以分配更多的Slot来运行任务。反之,则可能只能分配较少的Slot。
    
    任务的资源需求:如果任务需要大量的内存或计算资源,则可能需要分配更多的Slot来满足需求。
    
    • 1
    • 2
    • 3
    • 4
    • 5

    个人在编写Flink程序时,设置了并行度,打包上传运行,由于JobManager的默认numberOfTaskSlots配置为1,Solt数量不够,故出现上述异常。

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
     env.setParallelism(3);
    
    • 1
    • 2

    YARN运行模式

    客户端把Flink应用提交给Yarn的ResourceManager,Yarn的ResourceManager会向Yarn的NodeManager申请容器。在这些容器上,Flink会部署JobManager和TaskManager的实例,从而启动集群。Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。

    1.安装Hadoop

    安装Hadoop参考:搭建Hadoop3.X完全分布式集群环境

    2.配置环境变量

    # Hadoop
    export HADOOP_HOME=/usr/local/program/hadoop
    export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
    
    # Flink
    export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
    export HADOOP_CLASSPATH=`hadoop classpath`
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    3.启动Hadoop集群,包括HDFS和YARN

    [root@node01 hadoop]# sbin/start-all.sh 
    
    • 1

    4.启动netcat

    nc -lk 8888
    
    • 1

    会话模式

    YARN的会话模式需要首先申请一个YARN会话(YARN Session)来启动Flink集群。

    启动Hadoop集群

    启动Hadoop集群,包括HDFS和YARN

    [root@node01 hadoop]# sbin/start-all.sh 
    
    • 1

    申请一个YARN会话

    查看yarn-session.sh命令帮助

    [root@node01 flink]# bin/yarn-session.sh --help
    Usage:
       Optional
         -at,--applicationType <arg>     Set a custom application type for the application on YARN
         -D <property=value>             use value for given property
         -d,--detached                   If present, runs the job in detached mode
         -h,--help                       Help for the Yarn session CLI.
         -id,--applicationId <arg>       Attach to running YARN session
         -j,--jar <arg>                  Path to Flink jar file
         -jm,--jobManagerMemory <arg>    Memory for JobManager Container with optional unit (default: MB)
         -m,--jobmanager <arg>           Set to yarn-cluster to use YARN execution mode.
         -nl,--nodeLabel <arg>           Specify YARN node label for the YARN application
         -nm,--name <arg>                Set a custom name for the application on YARN
         -q,--query                      Display available YARN resources (memory, cores)
         -qu,--queue <arg>               Specify YARN queue.
         -s,--slots <arg>                Number of slots per TaskManager
         -t,--ship <arg>                 Ship files in the specified directory (t for transfer)
         -tm,--taskManagerMemory <arg>   Memory per TaskManager Container with optional unit (default: MB)
         -yd,--yarndetached              If present, runs the job in detached mode (deprecated; use non-YARN specific option instead)
         -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths for high availability mode
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    主要参数:

    -d:分离模式,让Flink YARN客户端后台运行,即YARN session可以后台运行
    
    -jm(--jobManagerMemory):配置JobManager所需内存,默认单位MB
    
    -nm(--name):配置在YARN UI界面上显示的任务名
    
    -qu(--queue):指定YARN队列名
    
    -tm(--taskManager):配置每个TaskManager所使用内存
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    执行脚本命令向YARN集群申请资源,开启一个YARN会话,启动Flink集群

    [root@node01 flink]# bin/yarn-session.sh -nm flink-test
    ......
    2023-06-12 22:03:01,088 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 22:03:01,428 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 22:03:01,457 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 22:03:01,476 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
    2023-06-12 22:03:01,480 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0001
    2023-06-12 22:03:01,613 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0001
    2023-06-12 22:03:01,613 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
    2023-06-12 22:03:01,615 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
    2023-06-12 22:03:06,406 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
    2023-06-12 22:03:06,407 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
    JobManager Web Interface: http://node03:37824
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    查看Yarn、Flink

    访问http://node01:8088/cluster查看yarn

    在这里插入图片描述
    YARN Session启动之后会给出一个Web UI地址以及一个YARN application ID

    2023-06-12 22:03:06,406 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
    2023-06-12 22:03:06,407 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
    JobManager Web Interface: http://node03:37824
    
    • 1
    • 2
    • 3

    访问给出的地址:http://node03:37824
    在这里插入图片描述

    提交作业

    可以通过Web UI或者命令行两种方式提交作业

    a.通过Web UI提交作业
    在这里插入图片描述

    b.通过命令行提交作业

    1.将Flink程序打Jar包并上传至集群
    
    2.执行命令将任务提交到已经开启的Yarn-Session中运行
    
    • 1
    • 2
    • 3

    客户端可以自行确定JobManager的地址,也可以通过-m或者-jobmanager参数指定JobManager的地址。同时JobManager的地址在YARN Session的启动页面中可以找到。

    [root@node01 ~]# /usr/local/program/flink/bin/flink run  -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar
    
    2023-06-12 22:21:08,468 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 22:21:08,468 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 22:21:08,824 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
    2023-06-12 22:21:08,860 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
    2023-06-12 22:21:08,986 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
    2023-06-12 22:21:09,049 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:37824 of application 'application_1686577483648_0001'.
    Job has been submitted with JobID cdf1ff7b48472b3d7bc413a1ee9700e8
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    查看、测试作业

    通过Flink的Web UI页面查看提交任务的运行情况,Flink会根据运行在JobManger上的作业所需要的Slot数量动态分配TaskManager资源。

    在这里插入图片描述

    发送数据测试

    [root@node01 program]# nc -lk 8888
    abc bcd cdf
    
    • 1
    • 2

    在这里插入图片描述

    单作业模式

    在YARN环境中,由于有了外部平台做资源调度,因此也可以直接向YARN提交一个单独的作业,从而启动一个Flink集群。

    提交作业

    执行命令提交作业

    [root@node01 flink]# bin/flink run -t yarn-per-job -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar
    .....
    2023-06-12 22:46:26,984 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 22:46:27,009 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 22:46:27,029 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
    2023-06-12 22:46:27,034 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0004
    2023-06-12 22:46:27,061 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0004
    2023-06-12 22:46:27,061 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
    2023-06-12 22:46:27,063 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
    2023-06-12 22:46:31,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
    2023-06-12 22:46:31,087 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
    Job has been submitted with JobID dfcb72ebf4a5f33d8e7967d6beaaf96d
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    注意:在使用-d参数启动时,启动过程中可能会出现如下异常:

    Exception in thread "Thread-5" java.lang.IllegalStateException: Trying to access closed classloader. Please check if you store classloaders directly or indirectly in static fields. If the stacktrace suggests that the leak occurs in a third party library and cannot be fixed immediately, you can disable this check with the configuration 'classloader.check-leaked-classloader'.
            at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.ensureInner(FlinkUserCodeClassLoaders.java:184)
            at org.apache.flink.util.FlinkUserCodeClassLoaders$SafetyNetWrapperClassLoader.getResource(FlinkUserCodeClassLoaders.java:208)
            at org.apache.hadoop.conf.Configuration.getResource(Configuration.java:2780)
            at org.apache.hadoop.conf.Configuration.getStreamReader(Configuration.java:3036)
            at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:2995)
            at org.apache.hadoop.conf.Configuration.loadResources(Configuration.java:2968)
            at org.apache.hadoop.conf.Configuration.getProps(Configuration.java:2848)
            at org.apache.hadoop.conf.Configuration.get(Configuration.java:1200)
            at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1812)
            at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1789)
            at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183)
            at org.apache.hadoop.util.ShutdownHookManager.shutdownExecutor(ShutdownHookManager.java:145)
            at org.apache.hadoop.util.ShutdownHookManager.access$300(ShutdownHookManager.java:65)
            at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:102)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    解决方案是在flink的/conf/flink-conf.yaml配置文件中设置

    classloader.check-leaked-classloader: false
    
    • 1

    查看Yarn、Flink

    访问http://node01:8088/cluster查看
    在这里插入图片描述

    打开Flink Web UI页面进行监控

    a.访问启动日志中的JobManager地址,如:node02:42192

    在这里插入图片描述
    b.也可以在http://node01:8088/cluster页面中跳转到Flink的Web UI界面

    在这里插入图片描述
    在这里插入图片描述

    查看、取消作业

    [root@node01 flink]# bin/flink list -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004
    
    2023-06-12 22:55:43,755 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 22:55:43,755 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 22:55:43,864 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
    2023-06-12 22:55:43,927 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
    2023-06-12 22:55:44,087 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
    2023-06-12 22:55:44,159 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
    Waiting for response...
    ------------------ Running/Restarting Jobs -------------------
    12.06.2023 22:46:30 : dfcb72ebf4a5f33d8e7967d6beaaf96d : Flink Streaming Job (RUNNING)
    --------------------------------------------------------------
    No scheduled jobs.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    取消作业

    # 如果取消作业,整个Flink集群会停掉
    bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_XXXX <jobId>
    
    • 1
    • 2
    [root@node01 flink]# bin/flink cancel -t yarn-per-job -Dyarn.application.id=application_1686577483648_0004  dfcb72ebf4a5f33d8e7967d6beaaf96d
    
    SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
    2023-06-12 22:57:06,430 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 22:57:06,430 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    Cancelling job dfcb72ebf4a5f33d8e7967d6beaaf96d.
    2023-06-12 22:57:06,560 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
    2023-06-12 22:57:06,638 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
    2023-06-12 22:57:06,830 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
    2023-06-12 22:57:06,895 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42192 of application 'application_1686577483648_0004'.
    Cancelled job dfcb72ebf4a5f33d8e7967d6beaaf96d.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    应用模式

    应用模式同样非常简单,与单作业模式类似,直接执行flink run-application命令即可。

    提交作业

    执行命令提交作业

    [root@node01 flink]# bin/flink run-application -t yarn-application -c cn.ybzy.demo.WordCountDemo  /root/demo-1.0-SNAPSHOT.jar
    
    2023-06-12 23:01:00,465 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 23:01:00,751 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 23:01:00,799 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 23:01:00,817 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
    2023-06-12 23:01:00,821 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0005
    2023-06-12 23:01:00,847 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0005
    2023-06-12 23:01:00,848 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
    2023-06-12 23:01:00,849 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
    2023-06-12 23:01:05,123 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
    2023-06-12 23:01:05,124 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述

    查看、取消作业

    查看作业

    [root@node01 flink]# bin/flink list -t yarn-application -Dyarn.application.id=application_1686577483648_0005
    
    2023-06-12 23:02:55,490 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 23:02:55,490 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 23:02:55,630 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
    2023-06-12 23:02:55,689 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
    2023-06-12 23:02:55,844 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
    2023-06-12 23:02:55,905 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
    Waiting for response...
    ------------------ Running/Restarting Jobs -------------------
    12.06.2023 23:01:05 : a66d8fa98d23210d36b5b005ff0a1c53 : Flink Streaming Job (RUNNING)
    --------------------------------------------------------------
    No scheduled jobs.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    取消作业

    [root@node01 flink]# bin/flink cancel -t yarn-application -Dyarn.application.id=application_1686577483648_0005 a66d8fa98d23210d36b5b005ff0a1c53
    
    2023-06-12 23:03:49,038 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    2023-06-12 23:03:49,038 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Found Yarn properties file under /tmp/.yarn-properties-root.
    Cancelling job a66d8fa98d23210d36b5b005ff0a1c53.
    2023-06-12 23:03:49,156 WARN  org.apache.flink.yarn.configuration.YarnLogConfigUtil        [] - The configuration directory ('/usr/local/program/flink/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file.
    2023-06-12 23:03:49,204 INFO  org.apache.hadoop.yarn.client.RMProxy                        [] - Connecting to ResourceManager at node01/192.168.1.100:8032
    2023-06-12 23:03:49,364 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
    2023-06-12 23:03:49,427 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node03:40762 of application 'application_1686577483648_0005'.
    Cancelled job a66d8fa98d23210d36b5b005ff0a1c53.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    从HDFS读取提交任务

    通过yarn.provided.lib.dirs配置选项指定位置,将flink的依赖上传到远程

    将Flink本身的依赖和用户jar预先上传到HDFS,而不需要单独发送到集群,这就使得作业提交更加轻量了

    上传flink的lib和plugins到HDFS上

    [root@node01 flink]#  hadoop fs -mkdir /flink-dist
    [root@node01 flink]# hadoop fs -put lib/ /flink-dist
    [root@node01 flink]# hadoop fs -put plugins/ /flink-dist
    
    • 1
    • 2
    • 3

    上传Flink开发程序jar包到HDFS

    [root@node01 flink]# hadoop fs -mkdir /flink-jar
    [root@node01 flink]# hadoop fs -put /root/demo-1.0-SNAPSHOT.jar /flink-jar
    
    • 1
    • 2

    提交作业

    [root@node01 flink]# bin/flink run-application -t yarn-application -Dyarn.provided.lib.dirs="hdfs://node01:9000/flink-dist"  -c cn.ybzy.demo.WordCountDemo hdfs://node01:9000/flink-jar/demo-1.0-SNAPSHOT.jar
    
    2023-06-12 23:19:20,128 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cluster specification: ClusterSpecification{masterMemoryMB=2500, taskManagerMemoryMB=2200, slotsPerTaskManager=3}
    2023-06-12 23:19:20,617 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 23:19:20,721 INFO  org.apache.hadoop.hdfs.protocol.datatransfer.sasl.SaslDataTransferClient [] - SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
    2023-06-12 23:19:20,783 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
    2023-06-12 23:19:20,788 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1686577483648_0009
    2023-06-12 23:19:20,816 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1686577483648_0009
    2023-06-12 23:19:20,816 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
    2023-06-12 23:19:20,817 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
    2023-06-12 23:19:24,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
    2023-06-12 23:19:24,086 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:43653 of application 'application_1686577483648_0009'.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述
    在这里插入图片描述

    Yarn模式高可用

    Standalone模式中, 同时启动多个Jobmanager, 一个为leader其他为standby, 当leader挂了, 其他的才会有一个成为leader

    yarn的高可用是同时只启动一个Jobmanager, 当这个Jobmanager挂了之后, yarn会再次启动一个, 其实是利用的yarn的重试次数来实现的高可用

    在yarn-site.xml中配置

    <property>
      <name>yarn.resourcemanager.am.max-attempts</name>
      <value>4</value>
      <description>The maximum number of application master execution attempts.  </description>
    </property>
    
    • 1
    • 2
    • 3
    • 4
    • 5

    在flink-conf.yaml中配置

    # 次数应该小于yarn-site.xml中配置重试次数
    yarn.application-attempts: 3
    high-availability.type: zookeeper
    high-availability.storageDir: hdfs://node01:9000/flink/yarn/ha
    high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
    high-availability.zookeeper.path.root: /flink-yarn
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    启动yarn-session

    [root@node01 flink]# bin/yarn-session.sh -nm flink-test
    
    • 1

    kill一个Jobmanager,查看复活情况

    jps
    
    kill -9 pid
    
    • 1
    • 2
    • 3
  • 相关阅读:
    【JavaSE】类和对象 (二) —— 封装、包以及 static 关键字
    EN 16034门窗及配件—CE认证
    mysql pgsql json数组指定条件遍历查询 通过select指定条件在json数组中做遍历查询匹配,不另外写函数
    06 存储引擎
    SPI正确连接
    【分布式】SpirngBoot 整合RabbitMQ、Exchagne模式、确认消费
    Using lxd to do vlan test (by quqi99)
    ubuntu linux C/C++环境搭建
    传统制造企业进行数字化转型,是翻身还是翻船?
    Terraform 系列-Terraform 简介
  • 原文地址:https://blog.csdn.net/qq_38628046/article/details/131178976