目录
Model Properties
-------------------------
date:2023-09-05T13:17:15.396588
description:Ultralytics YOLOv8n model trained on coco.yaml
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.170
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 84, 8400]
---------------------------------------------------------------
//缩放图片
max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
factors[0] = factors[1] = (float)(max_image_length / 640.0);
//数据归一化处理
BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);
//配置图片输入数据
opencv_net.SetInput(BN_image);
dt1 = DateTime.Now;
//模型推理,读取推理结果
result_mat = opencv_net.Forward();
dt2 = DateTime.Now;
//将推理结果转为float数据类型
result_mat_to_float = new Mat(8400, 84, MatType.CV_32F, result_mat.Data);
//将数据读取到数组中
result_mat_to_float.GetArray
- using OpenCvSharp;
- using OpenCvSharp.Dnn;
- using System;
- using System.Collections.Generic;
- using System.ComponentModel;
- using System.Data;
- using System.Drawing;
- using System.Linq;
- using System.Text;
- using System.Windows.Forms;
-
- namespace OpenCvSharp_Yolov8_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- string classer_path;
-
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
-
- DetectionResult result_pro;
- Mat result_mat;
- Mat result_image;
- Mat result_mat_to_float;
-
- Net opencv_net;
- Mat BN_image;
-
- float[] result_array;
- float[] factors;
-
- int max_image_length;
- Mat max_image;
- Rect roi;
-
- Result result;
- StringBuilder sb = new StringBuilder();
-
- private void Form1_Load(object sender, EventArgs e)
- {
- startupPath = System.Windows.Forms.Application.StartupPath;
- model_path = startupPath + "\\yolov8n.onnx";
- classer_path = startupPath + "\\yolov8-detect-lable.txt";
-
- //初始化网络类,读取本地模型
- opencv_net = CvDnn.ReadNetFromOnnx(model_path);
-
- result_array = new float[8400 * 84];
- factors = new float[2];
- }
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- //缩放图片
- max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
- max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
- roi = new Rect(0, 0, image.Cols, image.Rows);
- image.CopyTo(new Mat(max_image, roi));
-
- factors[0] = factors[1] = (float)(max_image_length / 640.0);
-
- //数据归一化处理
- BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false);
-
- //配置图片输入数据
- opencv_net.SetInput(BN_image);
-
- dt1 = DateTime.Now;
- //模型推理,读取推理结果
- result_mat = opencv_net.Forward();
- dt2 = DateTime.Now;
-
- //将推理结果转为float数据类型
- result_mat_to_float = new Mat(8400, 84, MatType.CV_32F, result_mat.Data);
-
- //将数据读取到数组中
- result_mat_to_float.GetArray<float>(out result_array);
-
- result_pro = new DetectionResult(classer_path, factors);
-
- result = result_pro.process_result(result_array);
-
- result_image = result_pro.draw_result(result, image.Clone());
-
- if (!result_image.Empty())
- {
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- sb.Clear();
- sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
- sb.AppendLine("------------------------------");
- for (int i = 0; i < result.length; i++)
- {
- sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
- , result.classes[i]
- , result.scores[i].ToString("0.00")
- , result.rects[i].TopLeft.X
- , result.rects[i].TopLeft.Y
- , result.rects[i].BottomRight.X
- , result.rects[i].BottomRight.Y
- ));
- }
- textBox1.Text = sb.ToString();
- }
- else
- {
- textBox1.Text = "无信息";
- }
-
- }
- }
- }