Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文等地学领域的主流编程语言之一。
人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。
专题一:Python软件的安装及入门
专题二 : 气象常用科学计算库
专题三 : 气象海洋常用可视化库
3.1可视化库介绍Matplotlib、Cartopy等
3.2 基础绘图
专题四 : 爬虫和气象海洋数据
专题五 : 气象海洋常用插值方法
专题六 : 机器学习基础理论和实操
6.1 机器学习基础原理
6.2 机器学习库scikit-learn
专题七 : 机器学习的应用实例
本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。
7.1机器学习与深度学习在气象中的应用
AI在气象模式订正、短临预报、气候预测等场景的应用
7.2 GFS数值模式的风速预报订正
7.3 台风预报数据智能订正
7.4 机器学习预测风电场的风功率
专题八 : 深度学习基础理论和实操
8.1 深度学习基本理论
深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。
8.2 Pytorch库
(1)sklearn介绍、常用功能和机器学习方法
学习经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。
(2) pytorch介绍、搭建 模型
学习目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。
专题九 : 深度学习的应用实例
本专题,在学习使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法LSTM,以及空间卷积算法UNET。
9.1深度学习预测浅水方程模式
9.2 LSTM方法预测ENSO
9.3深度学习—卷积网络
专题十 : EOF统计分析
1 、EOF基础和eofs库的介绍
2、 EOF分析海表面温度数据
(1)SST数据计算距平,去趋势
(2)SST进行EOF分析,可视化
专题十一: 模式后处理
1 、WRF模式后处理
2 、ROMS模式后处理