• yolov5训练与模型量化


    模型训练

    python train.py --img 96 --batch 16 --epochs 100 --data ../pigeon_config.yaml --cfg models/yolov5n.yaml --weights runs/train/exp2/weights/best.pt
    
    • 1

    模型量化

    python export.py --img 96 --data ../pigeon_config.yaml --weights runs/train/exp8/weights/best.pt --include tflite --int8
    
    • 1

    模型转为静态代码

    xxd -i best-int8.tflite model_data.cc
    
    • 1

    统计全部算子

    # 加载TFLite模型
    interpreter = Interpreter(model_path="model.tflite")
    interpreter.allocate_tensors()
    
    # 获取输入张量
    input_details = interpreter.get_input_details()
    print("Input details:")
    print(input_details)
    
    # 获取输出张量
    output_details = interpreter.get_output_details()
    print("Output details:")
    print(output_details)
    
    # 获取所有算子的名称和类型
    all_ops = interpreter._get_ops_details()
    print("All ops:")
    s = set()
    for op in all_ops:
        s.append(op['op_name'])
    l = sorted(s)
    print(l)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    降低模型大小

    修改 models/yolov5n.yaml 文件

    # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
    
    # Parameters
    nc: 2  # number of classes
    # depth_multiple: 0.33  # model depth multiple
    # width_multiple: 0.25  # layer channel multiple
    depth_multiple: 0.11  # model depth multiple
    width_multiple: 0.08  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
       [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
       [-1, 3, C3, [128]],
       [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
       [-1, 6, C3, [256]],
       [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
       [-1, 9, C3, [512]],
       [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
       [-1, 3, C3, [1024]],
       [-1, 1, SPPF, [1024, 5]],  # 9
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 6], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, C3, [512, False]],  # 13
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 4], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  # cat head P4
       [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 10], 1, Concat, [1]],  # cat head P5
       [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
    
       [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
  • 相关阅读:
    owt-server源码剖析(六)--集群分布及任务调度
    vue实现水平switch多个切换按钮
    Android多版本flavor配置之资源文件和清单文件合并介绍
    Python爬取代理IP
    神经网络参数研究方法,神经网络参数研究方向
    Using OpenGL in a SFML window
    启山智软/一款包含主流商城类型的一款电商中台系统100%开源
    TCP编程
    Java 和 JavaScript 有什么区别?
    【响应式编程】Schedulers之线程池共用问题
  • 原文地址:https://blog.csdn.net/ReadyShowShow/article/details/132993063