python train.py --img 96 --batch 16 --epochs 100 --data ../pigeon_config.yaml --cfg models/yolov5n.yaml --weights runs/train/exp2/weights/best.pt
python export.py --img 96 --data ../pigeon_config.yaml --weights runs/train/exp8/weights/best.pt --include tflite --int8
xxd -i best-int8.tflite model_data.cc
# 加载TFLite模型
interpreter = Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
# 获取输入张量
input_details = interpreter.get_input_details()
print("Input details:")
print(input_details)
# 获取输出张量
output_details = interpreter.get_output_details()
print("Output details:")
print(output_details)
# 获取所有算子的名称和类型
all_ops = interpreter._get_ops_details()
print("All ops:")
s = set()
for op in all_ops:
s.append(op['op_name'])
l = sorted(s)
print(l)
修改 models/yolov5n.yaml 文件
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# Parameters
nc: 2 # number of classes
# depth_multiple: 0.33 # model depth multiple
# width_multiple: 0.25 # layer channel multiple
depth_multiple: 0.11 # model depth multiple
width_multiple: 0.08 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]