android-goldfish-5.4-dev
AOSP > 文档 > 核心主题 > 输入
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt
https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt
Android_Kernel\goldfish\drivers\input
Android_Kernel\goldfish\include\linux\input.h
定义了一组标准事件类型和代码
Name: 设备名称
Phys: 系统层次结构中设备的物理路径
Uniq: 设备的唯一标识码(如果设备有)
Id: 设备的Id(struct input_Id
)
Propbit: 设备属性和怪癖的位图。
Evbit: 设备支持的事件类型的位图(EV_KEY
、EV_REL
等)
Keybit: 此设备具有的keys/buttons
位图
Relbit: 设备的相对轴位图
Absbit: 设备的绝对轴位图
Mscbit: 设备支持的杂项事件的位图
Ledbit: 设备上存在的LED位图
Sndbit: 设备支持的音效位图
Ffbit: 设备支持的力反馈效果位图
Swbit: 设备上存在的开关位图
Hint_events_per_packet: 设备在数据包中生成的平均事件数(EV_SYN
/SYN_REPORT
事件之间)。由事件处理程序用于估计容纳事件所需的缓冲区大小。
Keycodemax: 键代码表的大小
Keycodesize: 键代码表中元素的大小
Keycode: 此设备的扫描码到密钥码的映射
Getkeycode: 用于检索当前密钥映射的可选遗留方法。
Setkeycode: 更改当前密钥映射的可选方法,用于实现稀疏密钥映射。如果未提供,将使用默认机制。该方法在保持event_lock时被调用,因此不能休眠
Ff: 如果设备支持力反馈效应,则与设备相关的力反馈结构
Poller: 如果设备设置为使用轮询模式,则与设备关联的轮询器结构
Repeat_key: 存储上次按键的按键代码;用于实现软件自动监管
Timer: 软件自动恢复的计时器
Rep: 自动回放参数的当前值(延迟、速率)
Mt: 指向多点触摸状态的指针
Absinfo: 包含绝对轴信息(当前值、最小值、最大值、平坦值、模糊值、分辨率)的&struct input_Absinfo
元素数组
Key: 反映设备按键/按钮的当前状态
Led: 反映设备Led的当前状态
Snd: 反映音效的当前状态
Sw: 反映设备开关的当前状态
Open: 当第一个用户调用input_Open_device()
时,会调用此方法。驱动程序必须准备设备开始生成事件(启动轮询线程、请求IRQ、提交URB等)
Close: 当最后一个用户调用input_Close_device()时,会调用此方法。
Flush: 清除设备。最常用于消除与设备断开连接时加载到设备中的力反馈效应
Event: 发送到设备的事件的事件处理程序,如EV_LED
或EV_SND
。该设备应执行请求的操作(打开LED、播放声音等)呼叫受保护
Event_lock:并且不能休眠
Grab: 当前抓取设备的输入句柄(通过EVIOCGRABioctl
)。当句柄抓取设备时,它将成为来自该设备的所有输入事件的唯一接收者
Event_lock: 当input core
接收并处理设备的新事件时(在input_Event()
中),将获取此spinlock。在设备向输入核心注册后,访问和/或修改设备参数(如keymap
或absmin
、absmax
、absfuzz
等)的代码必须使用此锁。
Mutex: 序列化对open()
、close()
和flush()
方法的调用
Users: 存储打开此设备的用户数(输入处理程序)。input_open_device()
和input_close_device()
使用它来确保dev->open()
仅在第一个用户打开设备时调用,dev->close()
在最后一个用户关闭设备时调用
Going_away: 标记正在注销的设备,并使用-ENODEV
导致input_open_device*()
失败。
Dev: 此设备的驱动程序模型视图
H_list: 与设备相关联的输入句柄列表。访问列表时,必须持有dev->mutex
Node: 用于将设备放置在input_dev_list
上
Num_vals: 当前帧中排队的值数
Max_vals: 帧中排队的最大值数
Vals: 当前帧中排队的值数组
Devres_managed: 表示设备使用Devres框架
进行管理,不需要显式注销或释放。
Timestamp: 存储由驱动程序调用的input_set_Timestamp
设置的时间戳
include/linux/input.h
struct input_dev {
const char *name;
const char *phys;
const char *uniq;
struct input_id id;
unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];
unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];
unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
unsigned long swbit[BITS_TO_LONGS(SW_CNT)];
unsigned int hint_events_per_packet;
unsigned int keycodemax;
unsigned int keycodesize;
void *keycode;
int (*setkeycode)(struct input_dev *dev,
const struct input_keymap_entry *ke,
unsigned int *old_keycode);
int (*getkeycode)(struct input_dev *dev,
struct input_keymap_entry *ke);
struct ff_device *ff;
struct input_dev_poller *poller;
unsigned int repeat_key;
struct timer_list timer;
int rep[REP_CNT];
struct input_mt *mt;
struct input_absinfo *absinfo;
unsigned long key[BITS_TO_LONGS(KEY_CNT)];
unsigned long led[BITS_TO_LONGS(LED_CNT)];
unsigned long snd[BITS_TO_LONGS(SND_CNT)];
unsigned long sw[BITS_TO_LONGS(SW_CNT)];
int (*open)(struct input_dev *dev);
void (*close)(struct input_dev *dev);
int (*flush)(struct input_dev *dev, struct file *file);
int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);
struct input_handle __rcu *grab;
spinlock_t event_lock;
struct mutex mutex;
unsigned int users;
bool going_away;
struct device dev;
struct list_head h_list;
struct list_head node;
unsigned int num_vals;
unsigned int max_vals;
struct input_value *vals;
bool devres_managed;
ktime_t timestamp[INPUT_CLK_MAX];
};
Private: 驱动程序特定数据
Event: 事件处理程序。此方法由输入核心调用,同时禁用中断并保持dev->event_lock spinlock,因此它可能不会休眠
Events: 事件序列处理程序。此方法由输入核心调用,同时禁用中断并保持dev->event_lock spinlock,因此它可能不会休眠
Filter: 类似于event
;将普通事件处理程序与“Filter
”分离。
Match: 在比较设备的id和处理程序的id_table
后调用,以便在设备和处理程序之间进行细粒度匹配
Connect: 在将处理程序附加到输入设备时调用
Disconnect: 断开处理程序与输入设备的连接
**Start:**启动给定句柄的处理程序。这个函数是在connect()
方法之后由输入核心调用的,当“抓取”设备的进程释放它时也是如此
Legacy_minors: 由使用旧版次要范围的驱动程序设置为%true
Minor: 此驱动程序可以提供的设备的32个遗留次要范围的开始
Name: 处理程序的名称,显示在/proc/bus/input/handlers
中
Id_table: 指向此驱动程序可以处理的input_device_Id
表的指针
H_list: 与处理程序关联的输入处理程序列表
Node: 用于将驱动程序放置到input_handler_list
上
Input handlers
附加到input devices
并创建input handles
。可能有多个处理程序同时连接到任何给定的输入设备。他们所有人都将获得设备生成的输入事件的副本。使用完全相同的结构来实现输入过滤器。Input core
允许过滤器首先运行,并且如果任何过滤器指示应该过滤事件(通过从其filter()
方法返回%true
),则不会将事件传递给常规处理程序。请注意,输入核心序列化对connect()
和disconnect()
方法的调用。
include/linux/input.h
struct input_handler {
void *private;
void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
void (*events)(struct input_handle *handle,
const struct input_value *vals, unsigned int count);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
bool legacy_minors;
int minor;
const char *name;
const struct input_device_id *id_table;
struct list_head h_list;
struct list_head node;
};
一个
input_dev
上报的事件可以被多个input_handler
接收处理,一个input_handler
也可以处理多个input_dev
上报的事件,这样多个input_dev
和多个input_handler
之间可能会形成交织的网状。在这种情况下,需要一个桥梁来搭建两者之间的联系,两边的函数调用都可以通过这个“中介”进行,input_handle
就是这个桥梁。
Private: 特定于处理程序的数据
Open: 显示句柄是否“打开”的计数器,即应从其设备传递事件
Name: 创建句柄的处理程序赋予句柄的名称
Dev: 句柄所连接的输入设备
Handler: 通过该句柄与设备一起工作的句柄
D_node: 用于将句柄放在设备的附加句柄列表中
H_node: 用于将句柄放在处理程序的句柄列表中,从中获取事件
include/linux/input.h
struct input_handle {
void *private;
int open;
const char *name;
struct input_dev *dev;
struct input_handler *handler;
struct list_head d_node;
struct list_head h_node;
};
include/linux/input.h
drivers/input/input.c
sybsys_initcall
注册设定启动等级,保证其初始化会早于input设备和input_handler的注册module_init
方式注册input设备
和input_handler
subsys_initcall(input_init);
module_exit(input_exit);
drivers/input/input.c
class_register(&input_class)
input类注册,放在/sys/class
input_proc_init();
主要用于input_handler
和devices
信息查看,Proc
文件创建
register_chrdev_region(MKDEV(INPUT_MAJOR, 0), INPUT_MAX_CHAR_DEVICES, "input")
注册字符设备
static int __init input_init(void)
{
int err;
err = class_register(&input_class);
if (err) {
pr_err("unable to register input_dev class\n");
return err;
}
err = input_proc_init();
if (err)
goto fail1;
err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
INPUT_MAX_CHAR_DEVICES, "input");
if (err) {
pr_err("unable to register char major %d", INPUT_MAJOR);
goto fail2;
}
return 0;
fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}
class_register(&input_class)
input类注册,放在/sys/class
Linux内核API class_register|极客笔记
drivers/input/input.c
struct class input_class = {
.name = "input",
.devnode = input_devnode,
};
EXPORT_SYMBOL_GPL(input_class);
include/linux/device.h
drivers/base/class.c
/* This is a #define to keep the compiler from merging different
* instances of the __key variable */
#define class_register(class) \
({ \
static struct lock_class_key __key; \
__class_register(class, &__key); \
})
input_proc_init()
主要用于input_handler
和devices
信息查看,Proc
文件创建
static int __init input_proc_init(void)
{
struct proc_dir_entry *entry;
proc_bus_input_dir = proc_mkdir("bus/input", NULL);
if (!proc_bus_input_dir)
return -ENOMEM;
entry = proc_create("devices", 0, proc_bus_input_dir,
&input_devices_fileops);
if (!entry)
goto fail1;
entry = proc_create("handlers", 0, proc_bus_input_dir,
&input_handlers_fileops);
if (!entry)
goto fail2;
return 0;
fail2: remove_proc_entry("devices", proc_bus_input_dir);
fail1: remove_proc_entry("bus/input", NULL);
return -ENOMEM;
}
register_chrdev_region(MKDEV(INPUT_MAJOR, 0), INPUT_MAX_CHAR_DEVICES, "input")
注册字符设备;创建一个主设备为13的“input”设备
include/uapi/linux/major.h
#define INPUT_MAJOR 13
drivers/input/input.c
#define INPUT_MAX_CHAR_DEVICES 1024
fs/char_dev.c
/**
* register_chrdev_region() - register a range of device numbers
* @from: the first in the desired range of device numbers; must include
* the major number.
* @count: the number of consecutive device numbers required
* @name: the name of the device or driver.
*
* Return value is zero on success, a negative error code on failure.
*/
int register_chrdev_region(dev_t from, unsigned count, const char *name)
{
struct char_device_struct *cd;
dev_t to = from + count;
dev_t n, next;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
if (next > to)
next = to;
cd = __register_chrdev_region(MAJOR(n), MINOR(n),
next - n, name);
if (IS_ERR(cd))
goto fail;
}
return 0;
fail:
to = n;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
}
return PTR_ERR(cd);
}
input_allocate_device
-为新的输入设备分配内存
返回准备好的结构input_dev
或%NULL
。
注意:使用input_free_device()
释放尚未注册的设备;input_unregister_device()
应用于已注册的设备。
drivers/input/input.c
struct input_dev *devm_input_allocate_device(struct device *dev)
{
struct input_dev *input;
struct input_devres *devres;
devres = devres_alloc(devm_input_device_release,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return NULL;
input = input_allocate_device();
if (!input) {
devres_free(devres);
return NULL;
}
input->dev.parent = dev;
input->devres_managed = true;
devres->input = input;
devres_add(dev, devres);
return input;
}
EXPORT_SYMBOL(devm_input_allocate_device);
/**
* input_allocate_device - allocate memory for new input device
*
* Returns prepared struct input_dev or %NULL.
*
* NOTE: Use input_free_device() to free devices that have not been
* registered; input_unregister_device() should be used for already
* registered devices.
*/
struct input_dev *input_allocate_device(void)
{
static atomic_t input_no = ATOMIC_INIT(-1);
struct input_dev *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (dev) {
dev->dev.type = &input_dev_type;
dev->dev.class = &input_class;
device_initialize(&dev->dev);
mutex_init(&dev->mutex);
spin_lock_init(&dev->event_lock);
timer_setup(&dev->timer, NULL, 0);
INIT_LIST_HEAD(&dev->h_list);
INIT_LIST_HEAD(&dev->node);
dev_set_name(&dev->dev, "input%lu",
(unsigned long)atomic_inc_return(&input_no));
__module_get(THIS_MODULE);
}
return dev;
}
此函数将设备注册到
input core
。在注册之前,必须为设备分配input_allocate_device()
及其所有功能。如果函数失败,则必须使用input_free_device()
释放设备。一旦设备成功注册,就可以使用input_unregister_device()
进行注销;在这种情况下,不应调用input_free_device()
。请注意,此函数还用于注册托管输入设备(使用devm_input_allocate_device()
分配的设备)。这样的托管输入设备不需要明确地注销或释放,它们的拆除由devres基础设施控制。同样值得注意的是,删除托管输入设备在内部是一个两步过程:注册的托管输入设备首先未注册,但保留在内存中,并且仍然可以处理input_event()
调用(尽管事件不会传递到任何地方)。稍后,当devres堆栈展开到进行设备分配的点时,将释放托管输入设备。
device_add(&dev->dev)
:将设备注册为linux设备list_add_tail(&dev->node, &input_dev_list)
:将设备添加到linux内核全局列表input_dev_list
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
:遍历input_handler_list
,为设备找到自己的handler
drivers/input/input.c
int input_register_device(struct input_dev *dev)
{
struct input_devres *devres = NULL;
struct input_handler *handler;
unsigned int packet_size;
const char *path;
int error;
if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
dev_err(&dev->dev,
"Absolute device without dev->absinfo, refusing to register\n");
return -EINVAL;
}
if (dev->devres_managed) {
devres = devres_alloc(devm_input_device_unregister,
sizeof(*devres), GFP_KERNEL);
if (!devres)
return -ENOMEM;
devres->input = dev;
}
/* Every input device generates EV_SYN/SYN_REPORT events. */
__set_bit(EV_SYN, dev->evbit);
/* KEY_RESERVED is not supposed to be transmitted to userspace. */
__clear_bit(KEY_RESERVED, dev->keybit);
/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
input_cleanse_bitmasks(dev);
packet_size = input_estimate_events_per_packet(dev);
if (dev->hint_events_per_packet < packet_size)
dev->hint_events_per_packet = packet_size;
dev->max_vals = dev->hint_events_per_packet + 2;
dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
if (!dev->vals) {
error = -ENOMEM;
goto err_devres_free;
}
/*
* If delay and period are pre-set by the driver, then autorepeating
* is handled by the driver itself and we don't do it in input.c.
*/
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
input_enable_softrepeat(dev, 250, 33);
if (!dev->getkeycode)
dev->getkeycode = input_default_getkeycode;
if (!dev->setkeycode)
dev->setkeycode = input_default_setkeycode;
if (dev->poller)
input_dev_poller_finalize(dev->poller);
error = device_add(&dev->dev);
if (error)
goto err_free_vals;
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
pr_info("%s as %s\n",
dev->name ? dev->name : "Unspecified device",
path ? path : "N/A");
kfree(path);
error = mutex_lock_interruptible(&input_mutex);
if (error)
goto err_device_del;
list_add_tail(&dev->node, &input_dev_list);
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();
mutex_unlock(&input_mutex);
if (dev->devres_managed) {
dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
__func__, dev_name(&dev->dev));
devres_add(dev->dev.parent, devres);
}
return 0;
err_device_del:
device_del(&dev->dev);
err_free_vals:
kfree(dev->vals);
dev->vals = NULL;
err_devres_free:
devres_free(devres);
return error;
}
EXPORT_SYMBOL(input_register_device);
drivers/input/keyboard/gpio_keys.c
“gpio-keys”:platform_driver_register(&gpio_keys_device_driver) -> gpio_keys_probe -> devm_input_allocate_device -> input_register_device
如其它案例等查看如下等目录:
drivers/input/gameport
drivers/input/joystick
drivers/input/keyboard
drivers/input/misc
drivers/input/mouse
drivers/input/rmi4
drivers/input/serio
drivers/input/tablet
drivers/input/touchscreen
static struct platform_driver gpio_keys_device_driver = {
.probe = gpio_keys_probe,
.shutdown = gpio_keys_shutdown,
.driver = {
.name = "gpio-keys",
.pm = &gpio_keys_pm_ops,
.of_match_table = gpio_keys_of_match,
.dev_groups = gpio_keys_groups,
}
};
static int __init gpio_keys_init(void)
{
return platform_driver_register(&gpio_keys_device_driver);
}
static int gpio_keys_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct gpio_keys_platform_data *pdata = dev_get_platdata(dev);
struct fwnode_handle *child = NULL;
struct gpio_keys_drvdata *ddata;
struct input_dev *input;
int i, error;
int wakeup = 0;
if (!pdata) {
pdata = gpio_keys_get_devtree_pdata(dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
}
ddata = devm_kzalloc(dev, struct_size(ddata, data, pdata->nbuttons),
GFP_KERNEL);
if (!ddata) {
dev_err(dev, "failed to allocate state\n");
return -ENOMEM;
}
ddata->keymap = devm_kcalloc(dev,
pdata->nbuttons, sizeof(ddata->keymap[0]),
GFP_KERNEL);
if (!ddata->keymap)
return -ENOMEM;
input = devm_input_allocate_device(dev);
if (!input) {
dev_err(dev, "failed to allocate input device\n");
return -ENOMEM;
}
ddata->pdata = pdata;
ddata->input = input;
mutex_init(&ddata->disable_lock);
platform_set_drvdata(pdev, ddata);
input_set_drvdata(input, ddata);
input->name = pdata->name ? : pdev->name;
input->phys = "gpio-keys/input0";
input->dev.parent = dev;
input->open = gpio_keys_open;
input->close = gpio_keys_close;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
input->keycode = ddata->keymap;
input->keycodesize = sizeof(ddata->keymap[0]);
input->keycodemax = pdata->nbuttons;
/* Enable auto repeat feature of Linux input subsystem */
if (pdata->rep)
__set_bit(EV_REP, input->evbit);
for (i = 0; i < pdata->nbuttons; i++) {
const struct gpio_keys_button *button = &pdata->buttons[i];
if (!dev_get_platdata(dev)) {
child = device_get_next_child_node(dev, child);
if (!child) {
dev_err(dev,
"missing child device node for entry %d\n",
i);
return -EINVAL;
}
}
error = gpio_keys_setup_key(pdev, input, ddata,
button, i, child);
if (error) {
fwnode_handle_put(child);
return error;
}
if (button->wakeup)
wakeup = 1;
}
fwnode_handle_put(child);
error = input_register_device(input);
if (error) {
dev_err(dev, "Unable to register input device, error: %d\n",
error);
return error;
}
device_init_wakeup(dev, wakeup);
return 0;
}
一般来说
input_handler注册
会在input_dev设备注册
之前,常见的input_handler
:
evdev_handler
:响应绝大部分事件,默认input处理事件mousedev_handler
:鼠标类input事件joydev_handler
:游戏遥感类input事件kbd_handler
:键盘类事件input_leds_handler
apmpower_handler
drivers/input/evdev.c
static struct input_handler evdev_handler = {
.event = evdev_event,
.events = evdev_events,
.connect = evdev_connect,
.disconnect = evdev_disconnect,
.legacy_minors = true,
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids,
};
drivers/tty/vt/keyboard.c
static struct input_handler kbd_handler = {
.event = kbd_event,
.match = kbd_match,
.connect = kbd_connect,
.disconnect = kbd_disconnect,
.start = kbd_start,
.name = "kbd",
.id_table = kbd_ids,
};
drivers/input/mousedev.c
static struct input_handler mousedev_handler = {
.event = mousedev_event,
.connect = mousedev_connect,
.disconnect = mousedev_disconnect,
.legacy_minors = true,
.minor = MOUSEDEV_MINOR_BASE,
.name = "mousedev",
.id_table = mousedev_ids,
};
drivers/input/joydev.c
static struct input_handler joydev_handler = {
.event = joydev_event,
.match = joydev_match,
.connect = joydev_connect,
.disconnect = joydev_disconnect,
.legacy_minors = true,
.minor = JOYDEV_MINOR_BASE,
.name = "joydev",
.id_table = joydev_ids,
};
drivers/input/input-leds.c
static struct input_handler input_leds_handler = {
.event = input_leds_event,
.connect = input_leds_connect,
.disconnect = input_leds_disconnect,
.name = "leds",
.id_table = input_leds_ids,
};
drivers/input/apm-power.c
static struct input_handler apmpower_handler = {
.event = apmpower_event,
.connect = apmpower_connect,
.disconnect = apmpower_disconnect,
.name = "apm-power",
.id_table = apmpower_ids,
};
此函数为系统中的输入设备注册一个新的
input_handler
(接口),并将其连接到与该处理程序兼容的所有input devices
。
INIT_LIST_HEAD(&handler->h_list)
:初始化在Linux的内核链表list_add_tail(&handler->node, &input_handler_list)
:将handler添加到linux内核全局列表input_handler_list
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
:遍历input_handler_list
,为设备找到自己的handler
/**
* input_register_handler - register a new input handler
* @handler: handler to be registered
*
* This function registers a new input handler (interface) for input
* devices in the system and attaches it to all input devices that
* are compatible with the handler.
*/
int input_register_handler(struct input_handler *handler)
{
struct input_dev *dev;
int error;
error = mutex_lock_interruptible(&input_mutex);
if (error)
return error;
INIT_LIST_HEAD(&handler->h_list);
list_add_tail(&handler->node, &input_handler_list);
list_for_each_entry(dev, &input_dev_list, node)
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();
mutex_unlock(&input_mutex);
return 0;
}
EXPORT_SYMBOL(input_register_handler);
input_dev设备注册
和input_handler注册
都会调用input_attach_handler
input_match_device
:匹配成功返回handler->id_table
,即input_device_id
handler->connect(handler, dev, id)
:匹配成功调用connect
函数,如drivers/input/evdev.c#evdev_connect
、drivers/input/mousedev.c#mousedev_connect
static const struct input_device_id *input_match_device(struct input_handler *handler,
struct input_dev *dev)
{
const struct input_device_id *id;
for (id = handler->id_table; id->flags || id->driver_info; id++) {
if (input_match_device_id(dev, id) &&
(!handler->match || handler->match(handler, dev))) {
return id;
}
}
return NULL;
}
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
id = input_match_device(handler, dev);
if (!id)
return -ENODEV;
error = handler->connect(handler, dev, id);
if (error && error != -ENODEV)
pr_err("failed to attach handler %s to device %s, error: %d\n",
handler->name, kobject_name(&dev->dev.kobj), error);
return error;
}
如
drivers/input/evdev.c#evdev_connect
、drivers/input/mousedev.c#mousedev_connect
等;查看通用事件处理evdev.c
:
.driver_info = 1
: 其中evdev_ids
匹配所有设备,evdev_connect
:一旦注册就会evdev的connect
;
1》input_register_handle
注册一个新的input_handle
,主要将handle
分别挂载在input_dev
和input_handler
成员链表;
(evdev->handle.dev = input_get_device(dev);
、evdev->handle.handler = handler;
)
2》input_get_new_minor
最多能创建32个event设备#define EVDEV_MINORS 32
;
3》cdev_device_add
最终调用device_add
,向Linux系统新创建一个event设备/dev/input/eventX
drivers/input/evdev.c
struct evdev {
int open;
struct input_handle handle;
wait_queue_head_t wait;
struct evdev_client __rcu *grab;
struct list_head client_list;
spinlock_t client_lock; /* protects client_list */
struct mutex mutex;
struct device dev;
struct cdev cdev;
bool exist;
};
/*
* Create new evdev device. Note that input core serializes calls
* to connect and disconnect.
*/
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
int dev_no;
int error;
minor = input_get_new_minor(EVDEV_MINOR_BASE, EVDEV_MINORS, true);
if (minor < 0) {
error = minor;
pr_err("failed to reserve new minor: %d\n", error);
return error;
}
evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
if (!evdev) {
error = -ENOMEM;
goto err_free_minor;
}
INIT_LIST_HEAD(&evdev->client_list);
spin_lock_init(&evdev->client_lock);
mutex_init(&evdev->mutex);
init_waitqueue_head(&evdev->wait);
evdev->exist = true;
dev_no = minor;
/* Normalize device number if it falls into legacy range */
if (dev_no < EVDEV_MINOR_BASE + EVDEV_MINORS)
dev_no -= EVDEV_MINOR_BASE;
dev_set_name(&evdev->dev, "event%d", dev_no);
evdev->handle.dev = input_get_device(dev);
evdev->handle.name = dev_name(&evdev->dev);
evdev->handle.handler = handler;
evdev->handle.private = evdev;
evdev->dev.devt = MKDEV(INPUT_MAJOR, minor);
evdev->dev.class = &input_class;
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);
error = input_register_handle(&evdev->handle);
if (error)
goto err_free_evdev;
cdev_init(&evdev->cdev, &evdev_fops);
error = cdev_device_add(&evdev->cdev, &evdev->dev);
if (error)
goto err_cleanup_evdev;
return 0;
err_cleanup_evdev:
evdev_cleanup(evdev);
input_unregister_handle(&evdev->handle);
err_free_evdev:
put_device(&evdev->dev);
err_free_minor:
input_free_minor(minor);
return error;
}
static const struct input_device_id evdev_ids[] = {
{ .driver_info = 1 }, /* Matches all devices */
{ }, /* Terminating zero entry */
};
MODULE_DEVICE_TABLE(input, evdev_ids);
static struct input_handler evdev_handler = {
.event = evdev_event,
.events = evdev_events,
.connect = evdev_connect,
.disconnect = evdev_disconnect,
.legacy_minors = true,
.minor = EVDEV_MINOR_BASE,
.name = "evdev",
.id_table = evdev_ids,
};
input_register_handle
-注册一个新的输入句柄
Handle:用于注册的Handle
这个函数将一个新的输入句柄放在input_dev
和input_handler
的列表中,这样,一旦使用input_open_device()
打开它,事件就可以在其中流动。这个函数应该从处理程序的connect()
方法调用。
/**
* input_register_handle - register a new input handle
* @handle: handle to register
*
* This function puts a new input handle onto device's
* and handler's lists so that events can flow through
* it once it is opened using input_open_device().
*
* This function is supposed to be called from handler's
* connect() method.
*/
int input_register_handle(struct input_handle *handle)
{
struct input_handler *handler = handle->handler;
struct input_dev *dev = handle->dev;
int error;
/*
* We take dev->mutex here to prevent race with
* input_release_device().
*/
error = mutex_lock_interruptible(&dev->mutex);
if (error)
return error;
/*
* Filters go to the head of the list, normal handlers
* to the tail.
*/
if (handler->filter)
list_add_rcu(&handle->d_node, &dev->h_list);
else
list_add_tail_rcu(&handle->d_node, &dev->h_list);
mutex_unlock(&dev->mutex);
/*
* Since we are supposed to be called from ->connect()
* which is mutually exclusive with ->disconnect()
* we can't be racing with input_unregister_handle()
* and so separate lock is not needed here.
*/
list_add_tail_rcu(&handle->h_node, &handler->h_list);
if (handler->start)
handler->start(handle);
return 0;
}
EXPORT_SYMBOL(input_register_handle);
input_dev
是硬件驱动层,代表一个input设备
input_handler
是事件处理层,代表一个事件处理器
input_handle
属于核心层,代表一个配对的input设备与input事件处理器
input_dev
通过全局的input_dev_list
链接在一起。设备注册的时候实现这个操作。
input_handler
通过全局的input_handler_list
链接在一起。事件处理器注册的时候实现这个操作。
input_hande
没有一个全局的链表,它注册的时候将自己分别挂在了input_dev
和input_handler
的h_list
上了。
通过input_dev
和input_handler
就可以找到input_handle
在设备注册和事件处理器, 注册的时候都要进行配对工作,配对后就会实现链接。
通过input_handle
也可以找到input_dev
和input_handler
。
input事件
一般采用中断方式
上报,相关方法input_report_abs
、input_report_key
、input_sync
等。最终input_sync
来表示一次事件上报,最终调用input_event
处理。
AOSP > 文档 > 核心主题 > 键盘设备、AOSP > 文档 > 核心主题 > 触摸设备
不同的
input设备
上报的input事件
的格式不同,常用的按键
或者触摸屏
采用的中断方式
上报。
比如触摸屏上报input事件
时一般需要上报手指的id、x坐标、y坐标等信息。
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt
https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt
input_report_abs(input, ABS_MT_POSITION_X, x);
input_report_abs(input, ABS_MT_POSITION_Y, y);
input_sync(input);
- | type | code | value |
---|---|---|---|
第1个点 | EV_ABS | ABS_MT_SLOT | 0 |
\ | EV_ABS | ABS_MT_TRACKING_ID | id |
\ | EV_ABS | ABS_MT_POSITION_X | x |
\ | EV_ABS | ABS_MT_POSITION_Y | y |
… | … | … | … |
第2个点 | EV_ABS | ABS_MT_SLOT | n |
\ | EV_ABS | ABS_MT_TRACKING_ID | id |
\ | EV_ABS | ABS_MT_POSITION_X | x |
\ | EV_ABS | ABS_MT_POSITION_Y | y |
实现各种输入设备的驱动程序应使用此功能来报告输入事件。另请参见
input_inject_event()
。
注意:input_event()
可以在使用input_allocate_device()
分配输入设备之后立即安全使用,甚至在使用input_register_device()
注册之前也是如此,但该事件不会到达任何输入处理程序。input_event()
的这种早期调用可以用于“种子”开关的初始状态或绝对轴的初始位置等
input_handle_event
:每一个事件上报都是通过input_event
接口来完成,在判定事件类型是否支持后,主要是调用input_handle_event
来完成input_get_disposition
:根据上报信息判断怎么处理handler->events()/handler->event()
:input_dev
对应input_handler
,如evdev_handler
等(input_event -> input_handle_event -> input_pass_values -> input_to_handler -> handler->events()/handler->event()
)
drivers/input/input.c
/*
* Pass event first through all filters and then, if event has not been
* filtered out, through all open handles. This function is called with
* dev->event_lock held and interrupts disabled.
*/
static unsigned int input_to_handler(struct input_handle *handle,
struct input_value *vals, unsigned int count)
{
struct input_handler *handler = handle->handler;
struct input_value *end = vals;
struct input_value *v;
if (handler->filter) {
for (v = vals; v != vals + count; v++) {
if (handler->filter(handle, v->type, v->code, v->value))
continue;
if (end != v)
*end = *v;
end++;
}
count = end - vals;
}
if (!count)
return 0;
if (handler->events)
handler->events(handle, vals, count);
else if (handler->event)
for (v = vals; v != vals + count; v++)
handler->event(handle, v->type, v->code, v->value);
return count;
}
/*
* Pass values first through all filters and then, if event has not been
* filtered out, through all open handles. This function is called with
* dev->event_lock held and interrupts disabled.
*/
static void input_pass_values(struct input_dev *dev,
struct input_value *vals, unsigned int count)
{
struct input_handle *handle;
struct input_value *v;
if (!count)
return;
rcu_read_lock();
handle = rcu_dereference(dev->grab);
if (handle) {
count = input_to_handler(handle, vals, count);
} else {
list_for_each_entry_rcu(handle, &dev->h_list, d_node)
if (handle->open) {
count = input_to_handler(handle, vals, count);
if (!count)
break;
}
}
rcu_read_unlock();
/* trigger auto repeat for key events */
if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
for (v = vals; v != vals + count; v++) {
if (v->type == EV_KEY && v->value != 2) {
if (v->value)
input_start_autorepeat(dev, v->code);
else
input_stop_autorepeat(dev);
}
}
}
}
/**
* input_event() - report new input event
* @dev: device that generated the event
* @type: type of the event
* @code: event code
* @value: value of the event
*
* This function should be used by drivers implementing various input
* devices to report input events. See also input_inject_event().
*
* NOTE: input_event() may be safely used right after input device was
* allocated with input_allocate_device(), even before it is registered
* with input_register_device(), but the event will not reach any of the
* input handlers. Such early invocation of input_event() may be used
* to 'seed' initial state of a switch or initial position of absolute
* axis, etc.
*/
void input_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
unsigned long flags;
if (is_event_supported(type, dev->evbit, EV_MAX)) {
spin_lock_irqsave(&dev->event_lock, flags);
input_handle_event(dev, type, code, value);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}
EXPORT_SYMBOL(input_event);
static void input_handle_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
int disposition = input_get_disposition(dev, type, code, &value);
if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
add_input_randomness(type, code, value);
if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
dev->event(dev, type, code, value);
if (!dev->vals)
return;
if (disposition & INPUT_PASS_TO_HANDLERS) {
struct input_value *v;
if (disposition & INPUT_SLOT) {
v = &dev->vals[dev->num_vals++];
v->type = EV_ABS;
v->code = ABS_MT_SLOT;
v->value = dev->mt->slot;
}
v = &dev->vals[dev->num_vals++];
v->type = type;
v->code = code;
v->value = value;
}
if (disposition & INPUT_FLUSH) {
if (dev->num_vals >= 2)
input_pass_values(dev, dev->vals, dev->num_vals);
dev->num_vals = 0;
/*
* Reset the timestamp on flush so we won't end up
* with a stale one. Note we only need to reset the
* monolithic one as we use its presence when deciding
* whether to generate a synthetic timestamp.
*/
dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
} else if (dev->num_vals >= dev->max_vals - 2) {
dev->vals[dev->num_vals++] = input_value_sync;
input_pass_values(dev, dev->vals, dev->num_vals);
dev->num_vals = 0;
}
}
evdev_events
将传入事件传递给所有连接的客户端
evdev_event/evdev_events -> evdev_pass_values -> __pass_event ->
input事件存储在client->buffer
中;kill_fasync
用于发送通知事件,告诉上层client->buffer
中有数据可以读了。
drivers/input/evdev.c
static void __pass_event(struct evdev_client *client,
const struct input_event *event)
{
client->buffer[client->head++] = *event;
client->head &= client->bufsize - 1;
if (unlikely(client->head == client->tail)) {
/*
* This effectively "drops" all unconsumed events, leaving
* EV_SYN/SYN_DROPPED plus the newest event in the queue.
*/
client->tail = (client->head - 2) & (client->bufsize - 1);
client->buffer[client->tail] = (struct input_event) {
.input_event_sec = event->input_event_sec,
.input_event_usec = event->input_event_usec,
.type = EV_SYN,
.code = SYN_DROPPED,
.value = 0,
};
client->packet_head = client->tail;
}
if (event->type == EV_SYN && event->code == SYN_REPORT) {
client->packet_head = client->head;
kill_fasync(&client->fasync, SIGIO, POLL_IN);
}
}
static void evdev_pass_values(struct evdev_client *client,
const struct input_value *vals, unsigned int count,
ktime_t *ev_time)
{
struct evdev *evdev = client->evdev;
const struct input_value *v;
struct input_event event;
struct timespec64 ts;
bool wakeup = false;
if (client->revoked)
return;
ts = ktime_to_timespec64(ev_time[client->clk_type]);
event.input_event_sec = ts.tv_sec;
event.input_event_usec = ts.tv_nsec / NSEC_PER_USEC;
/* Interrupts are disabled, just acquire the lock. */
spin_lock(&client->buffer_lock);
for (v = vals; v != vals + count; v++) {
if (__evdev_is_filtered(client, v->type, v->code))
continue;
if (v->type == EV_SYN && v->code == SYN_REPORT) {
/* drop empty SYN_REPORT */
if (client->packet_head == client->head)
continue;
wakeup = true;
}
event.type = v->type;
event.code = v->code;
event.value = v->value;
__pass_event(client, &event);
}
spin_unlock(&client->buffer_lock);
if (wakeup)
wake_up_interruptible(&evdev->wait);
}
/*
* Pass incoming events to all connected clients.
*/
static void evdev_events(struct input_handle *handle,
const struct input_value *vals, unsigned int count)
{
struct evdev *evdev = handle->private;
struct evdev_client *client;
ktime_t *ev_time = input_get_timestamp(handle->dev);
rcu_read_lock();
client = rcu_dereference(evdev->grab);
if (client)
evdev_pass_values(client, vals, count, ev_time);
else
list_for_each_entry_rcu(client, &evdev->client_list, node)
evdev_pass_values(client, vals, count, ev_time);
rcu_read_unlock();
}
/*
* Pass incoming event to all connected clients.
*/
static void evdev_event(struct input_handle *handle,
unsigned int type, unsigned int code, int value)
{
struct input_value vals[] = { { type, code, value } };
evdev_events(handle, vals, 1);
}
EventHub::getEvents -> resd
:input事件
存储在client->buffer
中,当应用层或框架层调用read函数
读取/dev/input/event*
文件时,例如evdev.c
会调用evdev_read
返回数据,event_fetch_next_event
:判断client->buffer
这个循环缓冲区中的头尾指针是否相等(相等时buffer中没有数据),不相等时取出一个input_event
类型的事件放入到event中;input_event_to_user
:将此事件copy到应用层,input_event_size
函数是用来获取一个input_event
事件的大小,循环复制client->buffer
中的事件到应用层的buffer中。
frameworks/native/services/inputflinger/reader/EventHub.cpp
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
ALOG_ASSERT(bufferSize >= 1);
std::scoped_lock _l(mLock);
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
mNeedToReopenDevices = false;
ALOGI("Reopening all input devices due to a configuration change.");
closeAllDevicesLocked();
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
std::unique_ptr<Device> device = std::move(*it);
ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
event->when = now;
event->deviceId = (device->id == mBuiltInKeyboardId)
? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
: device->id;
event->type = DEVICE_REMOVED;
event += 1;
it = mClosingDevices.erase(it);
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
while (!mOpeningDevices.empty()) {
std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
mOpeningDevices.pop_back();
ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
// Try to find a matching video device by comparing device names
for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
it++) {
std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
if (tryAddVideoDeviceLocked(*device, videoDevice)) {
// videoDevice was transferred to 'device'
it = mUnattachedVideoDevices.erase(it);
break;
}
}
auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
if (!inserted) {
ALOGW("Device id %d exists, replaced.", device->id);
}
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
while (mPendingEventIndex < mPendingEventCount) {
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.fd == mINotifyFd) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
if (eventItem.data.fd == mWakeReadPipeFd) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char wakeReadBuffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
Device* device = getDeviceByFdLocked(eventItem.data.fd);
if (device == nullptr) {
ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
eventItem.data.fd);
ALOG_ASSERT(!DEBUG);
continue;
}
if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
if (eventItem.events & EPOLLIN) {
size_t numFrames = device->videoDevice->readAndQueueFrames();
if (numFrames == 0) {
ALOGE("Received epoll event for video device %s, but could not read frame",
device->videoDevice->getName().c_str());
}
} else if (eventItem.events & EPOLLHUP) {
// TODO(b/121395353) - consider adding EPOLLRDHUP
ALOGI("Removing video device %s due to epoll hang-up event.",
device->videoDevice->getName().c_str());
unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
device->videoDevice = nullptr;
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->videoDevice->getName().c_str());
ALOG_ASSERT(!DEBUG);
}
continue;
}
// This must be an input event
if (eventItem.events & EPOLLIN) {
int32_t readSize =
read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %" PRId32
" bufferSize: %zu capacity: %zu errno: %d)\n",
device->fd, readSize, bufferSize, capacity, errno);
deviceChanged = true;
closeDeviceLocked(*device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
struct input_event& iev = readBuffer[i];
event->when = processEventTimestamp(iev);
event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
if (capacity == 0) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.c_str());
deviceChanged = true;
closeDeviceLocked(*device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
device->identifier.name.c_str());
}
}
// readNotify() will modify the list of devices so this must be done after
// processing all other events to ensure that we read all remaining events
// before closing the devices.
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
// Report added or removed devices immediately.
if (deviceChanged) {
continue;
}
// Return now if we have collected any events or if we were explicitly awoken.
if (event != buffer || awoken) {
break;
}
// Poll for events.
// When a device driver has pending (unread) events, it acquires
// a kernel wake lock. Once the last pending event has been read, the device
// driver will release the kernel wake lock, but the epoll will hold the wakelock,
// since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
// is called again for the same fd that produced the event.
// Thus the system can only sleep if there are no events pending or
// currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
mLock.lock(); // reacquire lock after poll
if (pollResult == 0) {
// Timed out.
mPendingEventCount = 0;
break;
}
if (pollResult < 0) {
// An error occurred.
mPendingEventCount = 0;
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
ALOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// Some events occurred.
mPendingEventCount = size_t(pollResult);
}
}
// All done, return the number of events we read.
return event - buffer;
}
drivers/input/evdev.c
static ssize_t evdev_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
struct evdev_client *client = file->private_data;
struct evdev *evdev = client->evdev;
struct input_event event;
size_t read = 0;
int error;
if (count != 0 && count < input_event_size())
return -EINVAL;
for (;;) {
if (!evdev->exist || client->revoked)
return -ENODEV;
if (client->packet_head == client->tail &&
(file->f_flags & O_NONBLOCK))
return -EAGAIN;
/*
* count == 0 is special - no IO is done but we check
* for error conditions (see above).
*/
if (count == 0)
break;
while (read + input_event_size() <= count &&
evdev_fetch_next_event(client, &event)) {
if (input_event_to_user(buffer + read, &event))
return -EFAULT;
read += input_event_size();
}
if (read)
break;
if (!(file->f_flags & O_NONBLOCK)) {
error = wait_event_interruptible(evdev->wait,
client->packet_head != client->tail ||
!evdev->exist || client->revoked);
if (error)
return error;
}
}
return read;
}
event_fetch_next_event
:判断client->buffer
这个循环缓冲区中的头尾指针是否相等(相等时buffer中没有数据),不相等时取出一个input_event
类型的事件放入到event中
drivers/input/evdev.c
static int evdev_fetch_next_event(struct evdev_client *client,
struct input_event *event)
{
int have_event;
spin_lock_irq(&client->buffer_lock);
have_event = client->packet_head != client->tail;
if (have_event) {
*event = client->buffer[client->tail++];
client->tail &= client->bufsize - 1;
}
spin_unlock_irq(&client->buffer_lock);
return have_event;
}
input_event_to_user
:将此事件copy
到应用层,input_event_size
函数是用来获取一个input_event
事件的大小,循环复制client->buffer
中的事件到应用层的buffer中
drivers/input/input-compat.c
#ifdef CONFIG_COMPAT
int input_event_to_user(char __user *buffer,
const struct input_event *event)
{
if (in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
struct input_event_compat compat_event;
compat_event.sec = event->input_event_sec;
compat_event.usec = event->input_event_usec;
compat_event.type = event->type;
compat_event.code = event->code;
compat_event.value = event->value;
if (copy_to_user(buffer, &compat_event,
sizeof(struct input_event_compat)))
return -EFAULT;
} else {
if (copy_to_user(buffer, event, sizeof(struct input_event)))
return -EFAULT;
}
return 0;
}
#else
int input_event_to_user(char __user *buffer,
const struct input_event *event)
{
if (copy_to_user(buffer, event, sizeof(struct input_event)))
return -EFAULT;
return 0;
}
#endif /* CONFIG_COMPAT */
https://www.kernel.org/doc/Documentation/input/input.txt
Linux值输入子系统分析(详解)
input输入子系统