• 基于matlab实现的平面波展开法二维声子晶体能带计算程序


    Matlab 平面波展开法计算二维声子晶体二维声子晶体带结构计算,材料是铅柱在橡胶基体中周期排列,格子为正方形。采用PWE方法计算

    完整程序:

    %%%%%%%%%%%%%%%%%%%%%%%%%
    clear;clc;tic;epssys=1.0e-6; %设定一个最小量,避免系统截断误差或除零错误
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%

    %定义实际的正空间格子基矢
    %%%%%%%%%%%%%%%%%%%%%%%%%%
    a=0.02;
    a1=a*[1 0];
    a2=a*[0 1];
    %%%%%%%%%%%%%%%%%%%%%%%%%%

    %定义晶格的参数
    %%%%%%%%%%%%%%%%%%%%%%%%%%
    rho1=11600;E1=4.08e10;mju1=1.49e10;lambda1=mju1*(E1-2*mju1)/(3*mju1-E1); %散射体的材料参数
    rho2=1300;E2=1.175e5;mju2=4e4;lambda2=mju2*(E2-2*mju2)/(3*mju2-E2); %基体的材料参数
    Rc=0.006; %散射体截面半径
    Ac=pi*(Rc)^2; %散射体截面面积
    Au=a^2; %二维格子原胞面积
    Pf=Ac/Au; %填充率
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    %生成倒格基矢
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    b1=2*pi/a*[1 0];
    b2=2*pi/a*[0 1];
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %选定参与运算的倒空间格矢量,即参与运算的平面波数量
    %设定一个l,m的取值范围,变化l,m即可得出参与运算的平面波集合
    NrSquare=10; %选定倒空间的尺度,即l,m(倒格矢G=l*b1+m*b2)的取值范围。
                 %NrSquare确定后,使用Bloch波数目可能为(2*NrSquare+1)^2
    G=zeros((2*NrSquare+1)^2,2); %初始化可能使用的倒格矢矩阵
    i=1;
    for l=-NrSquare:NrSquare
        for m=-NrSquare:NrSquare
            G(i,:)=l*b1+m*b2;
            i=i+1;
        end;
    end;
    NG=i-1; %实际使用的Bloch波数目
    G=G(1:NG,:); 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %生成k空间的rho(Gi-Gj),mju(Gi-Gj),lambda(Gi-Gj)值,i,j从1到NG。
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    rho=zeros(NG,NG);mju=zeros(NG,NG);lambda=zeros(NG,NG);
    for i=1:NG
        for j=1:NG
            Gij=norm(G(j,:)-G(i,:));
            if (Gij             rho(i,j)=rho1*Pf+rho2*(1-Pf);
                mju(i,j)=mju1*Pf+mju2*(1-Pf);
                lambda(i,j)=lambda1*Pf+lambda2*(1-Pf);
            else
                rho(i,j)=(rho1-rho2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
                mju(i,j)=(mju1-mju2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
                lambda(i,j)=(lambda1-lambda2)*2*Pf*besselj(1,Gij*Rc)/(Gij*Rc);
            end;
        end;
    end;
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %定义简约布里渊区的各高对称点
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    T=(2*pi/a)*[epssys 0];
    M=(2*pi/a)*[1/2 1/2];
    X=(2*pi/a)*[1/2 0];
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %对于简约布里渊区边界上的每个k,求解其特征频率
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    THETA_A=zeros(NG,NG); %待解的本征方程A矩阵
    THETA_B=zeros(NG,NG); %待解的本征方程B矩阵
    Nkpoints=10; %每个方向上取的点数
    stepsize=0:1/(Nkpoints-1):1; %每个方向上步长
    TX_eig=zeros(Nkpoints,NG); %沿TX方向的波的待解的特征频率矩阵
    XM_eig=zeros(Nkpoints,NG); %沿XM方向的波的待解的特征频率矩阵
    MT_eig=zeros(Nkpoints,NG); %沿MT方向的波的待解的特征频率矩阵
    for n=1:Nkpoints
        fprintf(['\n k-point:',int2str(n),'of',int2str(Nkpoints),'.\n']);
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %对于TX(正方格子)方向上的每个k值,求解其特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        TX_step=stepsize(n)*(X-T)+T;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %n 求本征矩阵的元素
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        for i=1:NG
            for j=1:NG
                kGi=TX_step+G(i,:);
                kGj=TX_step+G(j,:);
                THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
                THETA_B(i,j)=rho(i,j); 
            end;
        end;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %求解TX(正方格子)方向上的k矩阵的特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        TX_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
        
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %对于XM(正方格子)方向上的每个k值,求解其特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        XM_step=stepsize(n)*(M-X)+X;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %n 求本征矩阵的元素
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        for i=1:NG
            for j=1:NG
                kGi=XM_step+G(i,:);
                kGj=XM_step+G(j,:);
                THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);
                THETA_B(i,j)=rho(i,j); 
            end;
        end;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %求解XM(正方格子)方向上的k矩阵的特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        XM_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %对于MT(正方格子)方向上的每个k值,求解其特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        MT_step=stepsize(n)*(T-M)+M;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %n 求本征矩阵的元素
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        for i=1:NG
            for j=1:NG
                kGi=MT_step+G(i,:);
                kGj=MT_step+G(j,:);
                THETA_A(i,j)=mju(i,j)*dot(kGi,kGj);      
                THETA_B(i,j)=rho(i,j); 
            end;
        end;
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        %求解MT(正方格子)方向上的k矩阵的特征频率
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        MT_eig(n,:)=sort(sqrt(eig(THETA_A,THETA_B))).';  
    end;
    fprintf('\n Calculation Time:%d sec',toc);
    save pbs2D
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %绘制声子晶体能带结构图
    %首先将特定方向(正方格子:TX,XM,MT)离散化
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    kaxis=0;
    TXaxis=kaxis:norm(T-X)/(Nkpoints-1):(kaxis+norm(T-X));
    kaxis=kaxis+norm(T-X);
    XMaxis=kaxis:norm(M-X)/(Nkpoints-1):(kaxis+norm(X-M));
    kaxis=kaxis+norm(X-M);
    MTaxis=kaxis:norm(T-M)/(Nkpoints-1):(kaxis+norm(T-M));
    kaxis=kaxis+norm(T-M);
     
    Ntraject=3; %所需绘制的特定方向的数目
    EigFreq=zeros(Ntraject*Nkpoints,1);
    figure(1)
    hold on;
    Nk=Nkpoints;
     
     
    for k=1:NG 
        for i=1:Nkpoints 
            EigFreq(i+0*Nk)=TX_eig(i,k)/(2*pi); 
            EigFreq(i+1*Nk)=XM_eig(i,k)/(2*pi); 
            EigFreq(i+2*Nk)=MT_eig(i,k)/(2*pi); 
        end; 
        plot(TXaxis(1:Nk),EigFreq(1+0*Nk:1*Nk),'b',... 
             XMaxis(1:Nk),EigFreq(1+1*Nk:2*Nk),'b',... 
             MTaxis(1:Nk),EigFreq(1+2*Nk:3*Nk),'b'); 
    end;
    grid on;
    hold off;
    titlestr='传统平面波展开法计算得到的二维声子晶体能带结构图';
    title(titlestr);
    xlabel('波矢k');
    ylabel('频率f/Hz');
     
    axis([0 MTaxis(Nkpoints) 0 800]);
    set(gca,'XTick',[TXaxis(1) TXaxis(Nkpoints) XMaxis(Nkpoints) MTaxis(Nkpoints)]);
    xtixlabel=char('T','X','M','T');
    set(gca,'XTickLabel',xtixlabel);
     

  • 相关阅读:
    1035 Password
    【HiFlow】定期发送腾讯云短信发送群
    红黑树(1)——为什么要有红黑树
    VUE3.0+Antdv+Asp.net WebApi开发学生信息管理系统(完)
    Maven的简单介绍
    代码随想录算法训练营第四十六天 | LeetCode 139. 单词拆分、多重背包、背包总结
    ChinaSkills技能大赛网络系统管理Debian模块(样题一)||SERVER01 TASK配置
    C++课程总复习
    SpringBoot+ShardingSphere彻底解决生产环境数据库字段加解密问题
    旅游出行类APP如何找到策略优势,最大化流量红利
  • 原文地址:https://blog.csdn.net/weixin_56691527/article/details/132912984