• K8S 二进制部署


    一、准备规划

    名称IP服务
    master01192.168.147.100kube-apiserver kube-controller-manager kube-scheduler etcd
    master02192.168.147.101kube-apiserver kube-controller-manager kube-scheduler
    node01192.168.147.102kubelet kube-proxy docker etcd
    node02192.168.147.105kubelet kube-proxy docker etcd
    lb01192.168.147.106nginx+keepalive01(master)
    lb02192.168.147.107nginx+keepalive02(backup)
    VIP192.168.147.200

    二、操作系统初始化配置

    2.1 关闭防火墙

    systemctl stop firewalld
    systemctl disable firewalld
    iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X
    
    • 1
    • 2
    • 3

    2.2 关闭selinux

    setenforce 0
    sed -i 's/enforcing/disabled/' /etc/selinux/config
    
    • 1
    • 2

    2.3 关闭swap

    swapoff -a		临时关闭
    sed -ri 's/.*swap.*/#&/' /etc/fstab		永久关闭
    
    • 1
    • 2

    2.4 根据规划设置主机名

    hostnamectl set-hostname master01
    hostnamectl set-hostname node01
    hostnamectl set-hostname node02
    
    • 1
    • 2
    • 3

    2.5 在master添加hosts

    cat >> /etc/hosts << EOF
    192.168.147.100 master01
    192.168.147.101 master02
    192.168.147.102 node01
    192.168.147.105 node02
    192.168.147.106 lb01
    192.168.147.107 lb02
    EOF
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    在这里插入图片描述

    2.6 调整内核参数

    cat > /etc/sysctl.d/k8s.conf << EOF
    #开启网桥模式,可将网桥的流量传递给iptables链
    net.bridge.bridge-nf-call-ip6tables = 1
    net.bridge.bridge-nf-call-iptables = 1
    #关闭ipv6协议
    net.ipv6.conf.all.disable_ipv6=1
    net.ipv4.ip_forward=1
    EOF
    
    sysctl --system
    
    #时间同步
    yum install ntpdate -y
    ntpdate time.windows.com
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    三、部署 docker引擎

    //所有 node 节点部署docker引擎
    yum install -y yum-utils device-mapper-persistent-data lvm2
    yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
    yum install -y docker-ce docker-ce-cli containerd.io
    
    systemctl start docker.service
    systemctl enable docker.service 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    四、部署 etcd 集群

    etcd是CoreOS团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用raft协议作为一致性算法,etcd是go语言编写的。

    etcd 作为服务发现系统,有以下的特点:

    • 简单:安装配置简单,而且提供了HTTP API进行交互,使用也很简单
    • 安全:支持SSL证书验证
    • 快速:单实例支持每秒2k+读操作
    • 可靠:采用raft算法,实现分布式系统数据的可用性和一致性

    etcd 目前默认使用 2379端口提供HTTP API服务2380端口和peer通信 (这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。 即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。

    etcd 在生产环境中一般推荐集群方式部署。由于etcd 的leader选举机制,要求至少为3台或以上的奇数台。

    4.1 准备签发证书环境

    CFSSL 是 CloudFlare 公司开源的一款 PKI/TLS 工具。 CFSSL 包含一个命令行工具和一个用于签名、验证和捆绑 TLS 证书的 HTTP API 服务。使用Go语言编写。

    CFSSL 使用配置文件生成证书,因此自签之前,需要生成它识别的 json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。
    CFSSL 用来为 etcd 提供 TLS 证书,它支持签三种类型的证书:

    1、client 证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如 kube-apiserver 访问 etcd;

    2、server 证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如 etcd 对外提供服务;

    3、peer 证书,相互之间连接时使用的证书,如 etcd 节点之间进行验证和通信。

    这里全部都使用同一套证书认证。

    //在 master01 节点上操作     
    
    #准备cfssl证书生成工具
    wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
    wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
    wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
    
    chmod +x /usr/local/bin/cfssl*
    
    cfssl:证书签发的工具命令
    cfssljson:将 cfssl 生成的证书(json格式)变为文件承载式证书
    cfssl-certinfo:验证证书的信息
    
    cfssl-certinfo -cert <证书名称>			#查看证书的信息
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    在这里插入图片描述

    4.2 生成Etcd证书

    mkdir /opt/k8s
    cd /opt/k8s/
    
    #上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
    chmod +x etcd-cert.sh etcd.sh
    
    #创建用于生成CA证书、etcd 服务器证书以及私钥的目录
    mkdir /opt/k8s/etcd-cert
    mv etcd-cert.sh etcd-cert/
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    在这里插入图片描述

    vim etcd.sh
    
    #!/bin/bash
    #example: ./etcd.sh etcd01 192.168.80.10 etcd02=https://192.168.80.11:2380,etcd03=https://192.168.80.12:2380
    
    #创建etcd配置文件/opt/etcd/cfg/etcd
    ETCD_NAME=$1
    ETCD_IP=$2
    ETCD_CLUSTER=$3
    
    WORK_DIR=/opt/etcd
    
    cat > $WORK_DIR/cfg/etcd  < /usr/lib/systemd/system/etcd.service <
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    vim etcd-cert.sh
    
    #!/bin/bash
    #配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
    cat > ca-config.json < ca-csr.json <:使用 CSRJSON 文件生成生成新的证书和私钥。如果不添加管道符号,会直接把所有证书内容输出到屏幕。
    #注意:CSRJSON 文件用的是相对路径,所以 cfssl 的时候需要 csr 文件的路径下执行,也可以指定为绝对路径。
    #cfssljson 将 cfssl 生成的证书(json格式)变为文件承载式证书,-bare 用于命名生成的证书文件。
    
    
    #-----------------------
    #生成 etcd 服务器证书和私钥
    cat > server-csr.json <
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    cd /opt/k8s/etcd-cert/
    ./etcd-cert.sh			#生成CA证书、etcd 服务器证书以及私钥
    
    ls
    ca-config.json  ca-csr.json  ca.pem        server.csr       server-key.pem
    ca.csr          ca-key.pem   etcd-cert.sh  server-csr.json  server.pem
    
    #上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
    https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz
    
    cd /opt/k8s/
    tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
    ls etcd-v3.4.9-linux-amd64
    
    Documentation  etcd  etcdctl  README-etcdctl.md  README.md  READMEv2-etcdctl.md
    
    etcd就是etcd 服务的启动命令,后面可跟各种启动参数
    
    etcdctl主要为etcd 服务提供了命令行操作
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    在这里插入图片描述
    在这里插入图片描述

    4.3 创建用于存放 etcd 配置文件,命令文件,证书的目录

    mkdir -p /opt/etcd/{cfg,bin,ssl}
    
    cd /opt/k8s/etcd-v3.4.9-linux-amd64/
    mv etcd etcdctl /opt/etcd/bin/
    cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
    
    cd /opt/k8s/
    ./etcd.sh etcd01 192.168.147.100 etcd02=https://192.168.147.102:2380,etcd03=https://192.168.147.105:2380
    #进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况
    
    #可另外打开一个窗口查看etcd进程是否正常
    ps -ef | grep etcd
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述
    在这里插入图片描述

    #把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
    scp -r /opt/etcd/ root@192.168.147.102:/opt/
    scp -r /opt/etcd/ root@192.168.147.105:/opt/
    scp /usr/lib/systemd/system/etcd.service root@192.168.147.102:/usr/lib/systemd/system/
    scp /usr/lib/systemd/system/etcd.service root@192.168.147.105:/usr/lib/systemd/system/
    
    • 1
    • 2
    • 3
    • 4
    • 5

    在这里插入图片描述
    在这里插入图片描述

    //在 node01 节点上操作
    vim /opt/etcd/cfg/etcd
    #[Member]
    ETCD_NAME="etcd02"											#修改
    ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
    ETCD_LISTEN_PEER_URLS="https://192.168.147.102:2380"			#修改
    ETCD_LISTEN_CLIENT_URLS="https://192.168.147.102:2379"		#修改
    
    #[Clustering]
    ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.147.102:2380"		#修改
    ETCD_ADVERTISE_CLIENT_URLS="https://192.168.147.102:2379"				#修改
    ETCD_INITIAL_CLUSTER="etcd01=https://192.168.147.100:2380,etcd02=https://192.168.147.102:2380,etcd03=https://192.168.147.105:2380"
    ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
    ETCD_INITIAL_CLUSTER_STATE="new"
    
    #启动etcd服务
    systemctl start etcd
    systemctl enable etcd     ##systemctl enable --now etcd
    systemctl在enable、disable、mask子命令里面增加了--now选项,可以激活同时启动服务,激活同时停止服务等。
    
    systemctl status etcd
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    在这里插入图片描述
    在这里插入图片描述

    //在 node02 节点上操作
    vim /opt/etcd/cfg/etcd
    #[Member]
    ETCD_NAME="etcd03"											#修改
    ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
    ETCD_LISTEN_PEER_URLS="https://192.168.147.105:2380"			#修改
    ETCD_LISTEN_CLIENT_URLS="https://192.168.147.105:2379"		#修改
    
    #[Clustering]
    ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.147.105:2380"		#修改
    ETCD_ADVERTISE_CLIENT_URLS="https://192.168.147.105:2379"				#修改
    ETCD_INITIAL_CLUSTER="etcd01=https://192.168.147.100:2380,etcd02=https://192.168.147.102:2380,etcd03=https://192.168.147.105:2380"
    ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
    ETCD_INITIAL_CLUSTER_STATE="new"
    
    #启动etcd服务
    systemctl start etcd
    systemctl enable etcd
    systemctl status etcd
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    在这里插入图片描述
    在这里插入图片描述

    #检查etcd群集状态
    ETCDCTL_API=3   /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.147.100:2379,https://192.168.147.102:2379,https://192.168.147.105:2379" endpoint health --write-out=table
    
    ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.147.100:2379,https://192.168.147.102:2379,https://192.168.147.105:2379" endpoint status --write-out=table
    
    ------------------------------------------------------------------------------------------------------------
    
    --cert-file:识别HTTPS端使用SSL证书文件
    --key-file:使用此SSL密钥文件标识HTTPS客户端
    --ca-file:使用此CA证书验证启用https的服务器的证书
    --endpoints:集群中以逗号分隔的机器地址列表
    
    cluster-health:检查etcd集群的运行状况
    
    #查看etcd集群成员列表
    ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.147.100:2379,https://192.168.147.102:2379,https://192.168.147.105:2379" --write-out=table member list
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    五、部署 Master 组件

    //在 master01 节点上操作
    #上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
    cd /opt/k8s/
    unzip master.zip
    chmod +x *.sh
    
    • 1
    • 2
    • 3
    • 4
    • 5

    在这里插入图片描述

    #创建kubernetes工作目录
    mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
    
    #创建用于生成CA证书、相关组件的证书和私钥的目录
    mkdir /opt/k8s/k8s-cert
    mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
    cd /opt/k8s/k8s-cert/
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    vim k8s-cert
    
    #!/bin/bash
    #配置证书生成策略,让 CA 软件知道颁发有什么功能的证书,生成用来签发其他组件证书的根证书
    cat > ca-config.json < ca-csr.json < apiserver-csr.json < admin-csr.json < kube-proxy-csr.json <
./k8s-cert.sh				#生成CA证书、相关组件的证书和私钥

ls *pem
admin-key.pem  apiserver-key.pem  ca-key.pem  kube-proxy-key.pem  
admin.pem      apiserver.pem      ca.pem      kube-proxy.pem
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述
在这里插入图片描述

#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/
  • 1
  • 2

在这里插入图片描述

#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
#下载地址:https://github.com/kubernetes/kubernetes/blob/release-1.20/CHANGELOG/CHANGELOG-1.20.md
#注:打开链接你会发现里面有很多包,下载一个server包就够了,包含了Master和Worker Node二进制文件。

cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <

在这里插入图片描述
在这里插入图片描述

#二进制文件、token、证书都准备好后,开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.147.100 https://192.168.147.100:2379,https://192.168.147.102:2379,https://192.168.147.105:2379

在这里插入图片描述

vim apiserver.sh

#!/bin/bash
#example: apiserver.sh 192.168.147.100 https://192.168.147.100:2379,https://192.168.147.102:2379,https://192.168.147.105:2379
#创建 kube-apiserver 启动参数配置文件
MASTER_ADDRESS=$1
ETCD_SERVERS=$2

cat >/opt/kubernetes/cfg/kube-apiserver <行修改和校验
#--authorization-mode:认证授权,启用RBAC授权和节点自管理。在安全端口使用RBAC,Node授权模式,未通过授权的请求拒绝,默认值AlwaysAllow。RBAC是用户通过角色与权限进行关联的模式;Node模式(节点授权)是一种特殊用途的授权模式,专门授权由kubelet发出的API请求,在进>行认证时,先通过用户名、用户分组验证是否是集群中的Node节点,只有是Node节点的请求才能使用Node模式授权
#--enable-bootstrap-token-auth:启用TLS bootstrap机制。在apiserver上启用Bootstrap Token 认证
#--token-auth-file=/opt/kubernetes/cfg/token.csv:指定bootstrap token认证文件路径
#--service-node-port-range:指定 Service  NodePort 的端口范围,默认值30000-32767
#–-kubelet-client-xxx:apiserver访问kubelet客户端证书
#--tls-xxx-file:apiserver https证书
#1.20版本必须加的参数:–-service-account-issuer,–-service-account-signing-key-file
#--etcd-xxxfile:连接Etcd集群证书
#–-audit-log-xxx:审计日志
#启动聚合层相关配置:–requestheader-client-ca-file,–proxy-client-cert-file,–proxy-client-key-file,–requestheader-allowed-names,–requestheader-extra-headers-prefix,–requestheader-group-headers,–requestheader-username-headers,–enable-aggregator-routing


#创建 kube-apiserver.service 服务管理文件
cat >/usr/lib/systemd/system/kube-apiserver.service <
#检查进程是否启动成功
ps aux | grep kube-apiserver

netstat -natp | grep 6443   #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证

在这里插入图片描述

#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler
vim scheduler.sh

#!/bin/bash
##创建 kube-scheduler 启动参数配置文件
MASTER_ADDRESS=$1

cat >/opt/kubernetes/cfg/kube-scheduler <致和同步。


##生成kube-scheduler证书
cd /opt/k8s/k8s-cert/
#创建证书请求文件
cat > kube-scheduler-csr.json << EOF
{
  "CN": "system:kube-scheduler",
  "hosts": [],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "L": "BeiJing",
      "ST": "BeiJing",
      "O": "system:masters",
      "OU": "System"
    }
  ]
}
EOF

#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler

#生成kubeconfig文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-scheduler.kubeconfig"
KUBE_APISERVER="https://192.168.147.100:6443"

kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-scheduler \
  --client-certificate=./kube-scheduler.pem \
  --client-key=./kube-scheduler-key.pem \
  --embed-certs=true \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kube-scheduler \
  --kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}


##创建 kube-scheduler.service 服务管理文件
cat >/usr/lib/systemd/system/kube-scheduler.service <

在这里插入图片描述

#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager
vim controller-manager.sh

#!/bin/bash
##创建 kube-controller-manager 启动参数配置文件
MASTER_ADDRESS=$1

cat >/opt/kubernetes/cfg/kube-controller-manager <件的默认值为192.168.0.0/16
#--cluster-signing-cert-file/–-cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致。指定签名的CA机构根证书>,用来签名为 TLS BootStrapping 创建的证书和私钥
#--root-ca-file:指定根CA证书文件路径,用来对 kube-apiserver 证书进行校验,指定该参数后,才会在 Pod 容器的 ServiceAccount 中放置
该 CA 证书文件
#--experimental-cluster-signing-duration:设置为 TLS BootStrapping 签署的证书有效时间为10年,默认为1年


##生成kube-controller-manager证书
cd /opt/k8s/k8s-cert/
#创建证书请求文件
cat > kube-controller-manager-csr.json << EOF
{
  "CN": "system:kube-controller-manager",
  "hosts": [],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "L": "BeiJing", 
      "ST": "BeiJing",
      "O": "system:masters",
      "OU": "System"
    }
  ]
}
EOF

#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager

#生成kubeconfig文件
KUBE_CONFIG="/opt/kubernetes/cfg/kube-controller-manager.kubeconfig"
KUBE_APISERVER="https://192.168.147.100:6443"

kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials kube-controller-manager \
  --client-certificate=./kube-controller-manager.pem \
  --client-key=./kube-controller-manager-key.pem \
  --embed-certs=true \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kube-controller-manager \
  --kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}


##创建 kube-controller-manager.service 服务管理文件
cat >/usr/lib/systemd/system/kube-controller-manager.service <

在这里插入图片描述

#生成kubectl连接集群的kubeconfig文件
./admin.sh
vim admin.sh

#!/bin/bash
mkdir /root/.kube
KUBE_CONFIG="/root/.kube/config"
KUBE_APISERVER="https://192.168.147.100:6443"

cd /opt/k8s/k8s-cert/

kubectl config set-cluster kubernetes \
  --certificate-authority=/opt/kubernetes/ssl/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-credentials cluster-admin \
  --client-certificate=./admin.pem \
  --client-key=./admin-key.pem \
  --embed-certs=true \
  --kubeconfig=${KUBE_CONFIG}
kubectl config set-context default \
  --cluster=kubernetes \
  --user=cluster-admin \
  --kubeconfig=${KUBE_CONFIG}
kubectl config use-context default --kubeconfig=${KUBE_CONFIG}

在这里插入图片描述

#通过kubectl工具查看当前集群组件状态
kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
controller-manager   Healthy   ok                  
scheduler            Healthy   ok                  
etcd-2               Healthy   {"health":"true"}   
etcd-1               Healthy   {"health":"true"}   
etcd-0               Healthy   {"health":"true"}  

#查看版本信息
kubectl version

在这里插入图片描述

六、部署 Worker Node 组件

//在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

在这里插入图片描述

//在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.147.102:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.147.105:/opt/kubernetes/bin/

在这里插入图片描述

#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中,生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件
#kubeconfig 文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群 context 上下文参数(集群名称、用户名)。Kubenetes 组件(如 kubelet、kube-proxy)通过启动时指定不同的 kubeconfig 文件可以切换到不同的集群,连接到 apiserver。
mkdir /opt/k8s/kubeconfig

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.147.100 /opt/k8s/k8s-cert/
vim kubeconfig.sh

#!/bin/bash
#example: kubeconfig 192.168.147.100 /opt/k8s/k8s-cert/
#创建bootstrap.kubeconfig文件
#该文件中内置了 token.csv 中用户的 Token,以及 apiserver CA 证书;kubelet 首次启动会加载此文件,使用 apiserver CA 证书建立与 apiserver 的 TLS 通讯,使用其中的用户 Token 作为身份标识向 apiserver 发起 CSR 请求

BOOTSTRAP_TOKEN=$(awk -F ',' '{print $1}' /opt/kubernetes/cfg/token.csv)
APISERVER=$1
SSL_DIR=$2

export KUBE_APISERVER="https://$APISERVER:6443"

# 设置集群参数
kubectl config set-cluster kubernetes \
  --certificate-authority=$SSL_DIR/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=bootstrap.kubeconfig
#--embed-certs=true:表示将ca.pem证书写入到生成的bootstrap.kubeconfig文件中

# 设置客户端认证参数,kubelet 使用 bootstrap token 认证
kubectl config set-credentials kubelet-bootstrap \
  --token=${BOOTSTRAP_TOKEN} \
  --kubeconfig=bootstrap.kubeconfig

# 设置上下文参数
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kubelet-bootstrap \
  --kubeconfig=bootstrap.kubeconfig

# 使用上下文参数生成 bootstrap.kubeconfig 文件
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig

#----------------------

#创建kube-proxy.kubeconfig文件
# 设置集群参数
kubectl config set-cluster kubernetes \
  --certificate-authority=$SSL_DIR/ca.pem \
  --embed-certs=true \
  --server=${KUBE_APISERVER} \
  --kubeconfig=kube-proxy.kubeconfig

# 设置客户端认证参数,kube-proxy 使用 TLS 证书认证
kubectl config set-credentials kube-proxy \
  --client-certificate=$SSL_DIR/kube-proxy.pem \
  --client-key=$SSL_DIR/kube-proxy-key.pem \
  --embed-certs=true \
  --kubeconfig=kube-proxy.kubeconfig

# 设置上下文参数
kubectl config set-context default \
  --cluster=kubernetes \
  --user=kube-proxy \
  --kubeconfig=kube-proxy.kubeconfig

# 使用上下文参数生成 kube-proxy.kubeconfig 文件
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig

在这里插入图片描述

#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.147.102:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.147.105:/opt/kubernetes/cfg/

在这里插入图片描述

#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

------------------------------------------------------------------------------------------

kubelet 采用 TLS Bootstrapping 机制,自动完成到 kube-apiserver 的注册,在 node 节点量较大或者后期自动扩容时非常有用。
Master apiserver 启用 TLS 认证后,node 节点 kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与 apiserver 通信,当 node 节点很多时,签署证书是一件很繁琐的事情。因此 Kubernetes 引入了 TLS bootstraping 机制来自动颁发客户端证书,kubelet 会以一个低权限用户自动向 apiserver 申请证书,kubelet 的证书由 apiserver 动态签署。

kubelet 首次启动通过加载 bootstrap.kubeconfig 中的用户 Token 和 apiserver CA 证书发起首次 CSR 请求,这个 Token 被预先内置在 apiserver 节点的 token.csv 中,其身份为 kubelet-bootstrap 用户和 system:kubelet-bootstrap 用户组;想要首次 CSR 请求能成功(即不会被 apiserver 401 拒绝),则需要先创建一个 ClusterRoleBinding,将 kubelet-bootstrap 用户和 system:node-bootstrapper 内置 ClusterRole 绑定(通过 kubectl get clusterroles 可查询),使其能够发起 CSR 认证请求。

TLS bootstrapping 时的证书实际是由 kube-controller-manager 组件来签署的,也就是说证书有效期是 kube-controller-manager 组件控制的;kube-controller-manager 组件提供了一个 --experimental-cluster-signing-duration 参数来设置签署的证书有效时间;默认为 8760h0m0s,将其改为 87600h0m0s,即 10 年后再进行 TLS bootstrapping 签署证书即可。

也就是说 kubelet 首次访问 API Server 时,是使用 token 做认证,通过后,Controller Manager 会为 kubelet 生成一个证书,以后的访问都是用证书做认证了。

在这里插入图片描述

//在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.147.102
ps aux | grep kubelet
vim kubelet.sh

#!/bin/bash

NODE_ADDRESS=$1
DNS_SERVER_IP=${2:-"10.0.0.2"}

#创建 kubelet 启动参数配置文件
cat >/opt/kubernetes/cfg/kubelet <完全一致
#--network-plugin:启用CNI
#--kubeconfig:指定kubelet.kubeconfig文件位置,当前为空路径,会自动生成,用于如何连接到apiserver,里面含有kubelet证书,master授
权完成后会在node节点上生成 kubelet.kubeconfig 文件
#--bootstrap-kubeconfig:指定连接 apiserver 的 bootstrap.kubeconfig 文件
#--config:指定kubelet配置文件的路径,启动kubelet时将从此文件加载其配置
#--cert-dir:指定master颁发的kubelet证书生成目录
#--pod-infra-container-image:指定Pod基础容器(Pause容器)的镜像。Pod启动的时候都会启动一个这样的容器,每个pod之间相互通信需要Pause的支持,启动Pause需要Pause基础镜像


#----------------------
#创建kubelet配置文件(该文件实际上就是一个yml文件,语法非常严格,不能出现tab键,冒号后面必须要有空格,每行结尾也不能有空格)
cat >/opt/kubernetes/cfg/kubelet.config </usr/lib/systemd/system/kubelet.service <

在这里插入图片描述

//在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME                                                   AGE     SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-uxhz6ALFXa9AEzaSTr2LvAGeLUaCu8sAXsZkIxvg9Ao   3m29s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

在这里插入图片描述

#通过 CSR 请求
kubectl certificate approve node-csr-uxhz6ALFXa9AEzaSTr2LvAGeLUaCu8sAXsZkIxvg9Ao

在这里插入图片描述

#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr
NAME                                                   AGE     SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-uxhz6ALFXa9AEzaSTr2LvAGeLUaCu8sAXsZkIxvg9Ao   5m44s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

在这里插入图片描述

#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node
NAME              STATUS     ROLES    AGE    VERSION
192.168.147.102   NotReady      108s   v1.20.11

在这里插入图片描述

//在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

在这里插入图片描述

#启动proxy服务
cd /opt/
./proxy.sh 192.168.147.102
ps aux | grep kube-proxy
vim /proxy.sh

#!/bin/bash

NODE_ADDRESS=$1

#创建 kube-proxy 启动参数配置文件
cat >/opt/kubernetes/cfg/kube-proxy <,即来自非 Pod 网络的流量被当成外部流量,访问 Service 时需要做 SNAT。
#--proxy-mode:指定流量调度模式为ipvs模式,可添加--ipvs-scheduler选项指定ipvs调度算法(rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq)
#--kubeconfig: 指定连接 apiserver 的 kubeconfig 文件    


#----------------------
#创建 kube-proxy.service 服务管理文件
cat >/usr/lib/systemd/system/kube-proxy.service <

在这里插入图片描述

七、部署 CNI 网络组件

7.1 部署 flannel

K8S 中 Pod 网络通信:

在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0/cni0 网桥,网段相同,所以它们之间可以直接通信。

Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN、Host-gw 3种数据转发方式。

Flannel UDP 模式的工作原理:
数据从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel0 接口,flanneld 服务监听在 flannel0 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 A 的 flanneld 服务将原本的数据内容封装到 UDP 报文中, 根据自己的路由表通过物理网卡投递给目的节点主机 B 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel0 接口, 之后被转发到目的主机的 docker0/cni0 网桥,最后就像本机容器通信一样由 docker0/cni0 转发到目标容器。

ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 UDP 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 VXLAN 模式差。

VXLAN 模式:
VXLAN 模式使用比较简单,flannel 会在各节点生成一个 flannel.1 的 VXLAN 网卡(VTEP设备,负责 VXLAN 封装和解封装)。
VXLAN 模式下封包与解包的工作是由内核进行的。flannel 不转发数据,仅动态设置 ARP 表和 MAC 表项。
UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 时在物理网络之上构建三层网络,属于 ip in udp ;VXLAN 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

Flannel VXLAN 模式跨主机的工作原理:
1、数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel.1 接口
2、flannel.1 收到数据帧后添加 VXLAN 头部,封装在 UDP 报文中
3、主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
4、主机 B 的物理网卡再通过 VXLAN 默认端口 4789 转发到 flannel.1 接口进行解封装
5、解封装以后,内核将数据帧发送到 cni0,最后由 cni0 发送到桥接到此接口的容器 B 中。

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

在这里插入图片描述
在这里插入图片描述

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 
vim kube-flannel.yml

---
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: psp.flannel.unprivileged
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: docker/default
    seccomp.security.alpha.kubernetes.io/defaultProfileName: docker/default
    apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
    apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
spec:
  privileged: false
  volumes:
  - configMap
  - secret
  - emptyDir
  - hostPath
  allowedHostPaths:
  - pathPrefix: "/etc/cni/net.d"
  - pathPrefix: "/etc/kube-flannel"
  - pathPrefix: "/run/flannel"
  readOnlyRootFilesystem: false
  # Users and groups
  runAsUser:
    rule: RunAsAny
  supplementalGroups:
    rule: RunAsAny
  fsGroup:
    rule: RunAsAny
  # Privilege Escalation
  allowPrivilegeEscalation: false
  defaultAllowPrivilegeEscalation: false
  # Capabilities
  allowedCapabilities: ['NET_ADMIN', 'NET_RAW']
  defaultAddCapabilities: []
  requiredDropCapabilities: []
  # Host namespaces
  hostPID: false
  hostIPC: false
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  # SELinux
  seLinux:
    # SELinux is unused in CaaSP
    rule: 'RunAsAny'
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: flannel
rules:
- apiGroups: ['extensions']
  resources: ['podsecuritypolicies']
  verbs: ['use']
  resourceNames: ['psp.flannel.unprivileged']
- apiGroups:
  - ""
  resources:
  - pods
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - nodes/status
  verbs:
  - patch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: flannel
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: flannel
subjects:
- kind: ServiceAccount
  name: flannel
  namespace: kube-system
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: flannel
  namespace: kube-system
---
kind: ConfigMap
apiVersion: v1
metadata:
  name: kube-flannel-cfg
  namespace: kube-system
  labels:
    tier: node
    app: flannel
data:
  cni-conf.json: |
    {
      "name": "cbr0",
      "cniVersion": "0.3.1",
      "plugins": [
        {
          "type": "flannel",
          "delegate": {
            "hairpinMode": true,
            "isDefaultGateway": true
          }
        },
        {
          "type": "portmap",
          "capabilities": {
            "portMappings": true
          }
        }
      ]
    }
  net-conf.json: |
    {
      "Network": "10.244.0.0/16",
      "Backend": {
        "Type": "vxlan"
      }
    }
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: kube-flannel-ds
  namespace: kube-system
  labels:
    tier: node
    app: flannel
spec:
  selector:
    matchLabels:
      app: flannel
  template:
    metadata:
      labels:
        tier: node
        app: flannel
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/os
                operator: In
                values:
                - linux
      hostNetwork: true
      priorityClassName: system-node-critical
      tolerations:
      - operator: Exists
        effect: NoSchedule
      serviceAccountName: flannel
      initContainers:
      - name: install-cni
        image: quay.io/coreos/flannel:v0.14.0
        command:
        - cp
        args:
        - -f
        - /etc/kube-flannel/cni-conf.json
        - /etc/cni/net.d/10-flannel.conflist
        volumeMounts:
        - name: cni
          mountPath: /etc/cni/net.d
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      containers:
      - name: kube-flannel
        image: quay.io/coreos/flannel:v0.14.0
        command:
        - /opt/bin/flanneld
        args:
        - --ip-masq
        - --kube-subnet-mgr
        resources:
          requests:
            cpu: "100m"
            memory: "50Mi"
          limits:
            cpu: "100m"
            memory: "50Mi"
        securityContext:
          privileged: false
          capabilities:
            add: ["NET_ADMIN", "NET_RAW"]
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: POD_NAMESPACE
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
        volumeMounts:
        - name: run
          mountPath: /run/flannel
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      volumes:
      - name: run
        hostPath:
          path: /run/flannel
      - name: cni
        hostPath:
          path: /etc/cni/net.d
      - name: flannel-cfg
        configMap:
          name: kube-flannel-cfg

在这里插入图片描述

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-x4fqw   1/1     Running   0          44s

在这里插入图片描述

kubectl get nodes
NAME              STATUS   ROLES    AGE    VERSION
192.168.147.102   Ready       102m   v1.20.11

在这里插入图片描述

7.2 部署 Calico

#k8s 组网方案对比:

需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发。
采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

Calico 主要由三个部分组成:
Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。

Calico 工作原理:
Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

//在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样

   - name: CALICO_IPV4POOL_CIDR
     value: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16

kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

7.3 node02 节点部署

//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.147.105:/opt/
scp -r /opt/cni root@192.168.147.105:/opt/

在这里插入图片描述

//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.147.105

在这里插入图片描述

//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE     SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-a0wQgyOa2XhBKrxRTYUa6JwTcXP5IWHzSo5I-_oLhSw   2m21s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

在这里插入图片描述

#通过 CSR 请求
kubectl certificate approve node-csr-a0wQgyOa2XhBKrxRTYUa6JwTcXP5IWHzSo5I-_oLhSw

在这里插入图片描述

kubectl get csr
NAME                                                   AGE     SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-a0wQgyOa2XhBKrxRTYUa6JwTcXP5IWHzSo5I-_oLhSw   5m10s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

在这里插入图片描述

//在 node02 节点上操作
#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

在这里插入图片描述

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.147.105

在这里插入图片描述

#查看群集中的节点状态
kubectl get nodes

在这里插入图片描述

八、部署 CoreDNS

CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

在这里插入图片描述

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml
vim coredns.yaml

# __MACHINE_GENERATED_WARNING__

apiVersion: v1
kind: ServiceAccount
metadata:
  name: coredns
  namespace: kube-system
  labels:
      kubernetes.io/cluster-service: "true"
      addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: Reconcile
  name: system:coredns
rules:
- apiGroups:
  - ""
  resources:
  - endpoints
  - services
  - pods
  - namespaces
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: EnsureExists
  name: system:coredns
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:coredns
subjects:
- kind: ServiceAccount
  name: coredns
  namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: coredns
  namespace: kube-system
  labels:
      addonmanager.kubernetes.io/mode: EnsureExists
data:
  Corefile: |
    .:53 {
        errors
        health {
            lameduck 5s
        }
        ready
        kubernetes cluster.local in-addr.arpa ip6.arpa {
            pods insecure
            fallthrough in-addr.arpa ip6.arpa
            ttl 30
        }
        prometheus :9153
        forward . /etc/resolv.conf {
            max_concurrent 1000
        }
        cache 30
        loop
        reload
        loadbalance
    }
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: coredns
  namespace: kube-system
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "CoreDNS"
spec:
  # replicas: not specified here:
  # 1. In order to make Addon Manager do not reconcile this replicas parameter.
  # 2. Default is 1.
  # 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
  selector:
    matchLabels:
      k8s-app: kube-dns
  template:
    metadata:
      labels:
        k8s-app: kube-dns
    spec:
      securityContext:
        seccompProfile:
          type: RuntimeDefault
      priorityClassName: system-cluster-critical
      serviceAccountName: coredns
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 100
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                  - key: k8s-app
                    operator: In
                    values: ["kube-dns"]
              topologyKey: kubernetes.io/hostname
      tolerations:
        - key: "CriticalAddonsOnly"
          operator: "Exists"
      nodeSelector:
        kubernetes.io/os: linux
      containers:
      - name: coredns
        image: k8s.gcr.io/coredns:1.7.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            memory: 170Mi
          requests:
            cpu: 100m
            memory: 70Mi
        args: [ "-conf", "/etc/coredns/Corefile" ]
        volumeMounts:
        - name: config-volume
          mountPath: /etc/coredns
          readOnly: true
        ports:
        - containerPort: 53
          name: dns
          protocol: UDP
        - containerPort: 53
          name: dns-tcp
          protocol: TCP
        - containerPort: 9153
          name: metrics
          protocol: TCP
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
        readinessProbe:
          httpGet:
            path: /ready
            port: 8181
            scheme: HTTP
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            add:
            - NET_BIND_SERVICE
            drop:
            - all
          readOnlyRootFilesystem: true
      dnsPolicy: Default
      volumes:
        - name: config-volume
          configMap:
            name: coredns
            items:
            - key: Corefile
              path: Corefile
---
apiVersion: v1
kind: Service
metadata:
  name: kube-dns
  namespace: kube-system
  annotations:
    prometheus.io/port: "9153"
    prometheus.io/scrape: "true"
  labels:
    k8s-app: kube-dns
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "CoreDNS"
spec:
  selector:
    k8s-app: kube-dns
  clusterIP: 10.0.0.2
  ports:
  - name: dns
    port: 53
    protocol: UDP
  - name: dns-tcp
    port: 53
    protocol: TCP
  - name: metrics
    port: 9153
    protocol: TCP

在这里插入图片描述

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

在这里插入图片描述

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

在这里插入图片描述

注: 如果出现以下报错

[root@master01 k8s]# kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
Error attaching, falling back to logs: unable to upgrade connection: Forbidden (user=system:anonymous, verb=create, resource=nodes, subresource=proxy)
pod "dns-test" deleted
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log dns-test)

需要添加 rbac 的权限,直接使用 kubectl 绑定 clusteradmin 管理员集群角色,授权操作权限

[root@master01 k8s]# kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

九、master02 节点部署

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.147.101:/opt/
scp -r /opt/kubernetes/ root@192.168.147.101:/opt
scp -r /root/.kube root@192.168.147.101:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.147.101:/usr/lib/systemd/system/
//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=2 \
--etcd-servers=https://192.168.10.80:2379,https://192.168.10.18:2379,https://192.168.10.19:2379 \
--bind-address=192.168.147.101 \				#修改
--secure-port=6443 \
--advertise-address=192.168.147.101 \			#修改
......

在这里插入图片描述

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

在这里插入图片描述

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

在这里插入图片描述

十、负载均衡部署

配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)

在lb01、lb02节点上操作

//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

在这里插入图片描述

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    access_log  /var/log/nginx/k8s-access.log  main;

upstream k8s-apiserver {
    server 192.168.147.100:6443;
    server 192.168.147.101:6443;
}
server {
    listen 6443;
    proxy_pass k8s-apiserver;
}

}

http {
......

在这里插入图片描述

//检查配置文件语法
nginx -t   

在这里插入图片描述

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

在这里插入图片描述
在这里插入图片描述

//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {

接收邮件地址

   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }

邮件发送地址

   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid,两个节点要一致
    priority 100			#lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.147.200/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}
//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

在这里插入图片描述

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

在这里插入图片描述

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.147.200:6443
                      
vim kubelet.kubeconfig
server: https://192.168.147.200:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.147.200:6443
//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service
//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      15257/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      15257/nginx: master 
tcp        0      0 192.168.147.106:57350   192.168.147.100:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:47768   192.168.147.101:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:47784   192.168.147.101:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:47796   192.168.147.101:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54462   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:57338   192.168.147.100:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54456   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:47776   192.168.147.101:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:47792   192.168.147.101:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49827   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49868   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54470   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49872   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:47770   192.168.147.101:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:57332   192.168.147.100:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49866   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:47780   192.168.147.101:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49874   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:57348   192.168.147.100:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49884   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:57354   192.168.147.100:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54466   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54468   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.106:47786   192.168.147.101:6443    ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54458   ESTABLISHED 15258/nginx: worker 
tcp        0      0 192.168.147.106:57324   192.168.147.100:6443    ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.105:54438   ESTABLISHED 15259/nginx: worker 
tcp        0      0 192.168.147.200:6443    192.168.147.102:49864   ESTABLISHED 15258/nginx: worker 

在这里插入图片描述

在 master01 节点上操作

//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s  			#创建完成,运行中

kubectl get pods -o wide
NAME    READY   STATUS    RESTARTS   AGE    IP            NODE              NOMINATED NODE   READINESS GATES
nginx   1/1     Running   0          3m4s   10.244.1.15   192.168.147.105              
//READY为1/1,表示这个Pod中有1个容器

在这里插入图片描述

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 10.244.1.15

//这时在master01节点上查看nginx日志
kubectl logs nginx-dbddb74b8-nf9sk

在这里插入图片描述

十一、部署 Dashboard

Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 node 上操作
#上传dashboard.tar和metrics-scraper.tar 到 /opt 下
scp dashboard.tar metrics-scraper.tar node02:/opt/

docker load -i dashboard.tar
docker load -i metrics-scraper.tar
//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:

   - port: 443
     targetPort: 8443
     nodePort: 30001     #添加
       type: NodePort          #添加
       selector:
         k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

在这里插入图片描述

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

在这里插入图片描述

#使用输出的token登录Dashboard
https://192.168.147.102:30001

在这里插入图片描述

  • 相关阅读:
    支持5G WIFI的串口服务器
    OpenCV 中的轮廓-查找轮廓的不同特征,例如面积,周长,重心,边界框等。
    Linux Systemd 配置开机自启
    Java之juc旅途-Executor(四)
    Linux命令行上传制品到artifactory
    【项目分析】仿linux0.11的操作系统内核
    SpringBoot面试题7:SpringBoot支持什么前端模板?
    音视频学习 - QT6.3.1创建QAudioSink+ ffmpeg项目进行音频解析及播放
    Android WMS——系统服务(二)
    2. 在node中使用ts
  • 原文地址:https://blog.csdn.net/m0_58076958/article/details/132820463