DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类是一种基于密度的聚类算法。它能够根据数据点的密度来将数据划分为不同的类别,并可以自动识别离群点。DBSCAN聚类算法的核心思想是将密度高的数据点划分为同一个簇,将密度低的数据点划分为噪声点。通过定义数据点之间的距离和密度阈值,DBSCAN可以在不需要事先确定簇的数量的情况下进行聚类。
聚类应用于数据集以对相似的数据点集进行分组。它寻找数据点中的相似点和不同点,并将它们混杂在一起。聚类中没有标签。聚类是一种无监督学习,旨在发现数据集的底层结构。