数据集:25601行×13列
由于包或数据格式错误,地图无法显示区域颜色。
- import pandas as pd
- from pyecharts.charts import *
- import pyecharts.options as opts
- df = pd.read_csv('./directory.csv')
-
- a = list(df.Country.value_counts().to_dict().items())
- print(a)
- map = Map()
- map.add('', list(df.Country.value_counts().to_dict().items()),maptype='world',is_roam=False,
- is_map_symbol_show=False,label_opts=opts.LabelOpts(is_show=False))
- map.set_global_opts(title_opts=opts.TitleOpts(title='星巴克全球分布图',pos_left='center'),
- visualmap_opts=opts.VisualMapOpts(max_=14000))
- map.render('bbb.html')
- map.set_global_opts(title_opts=opts.TitleOpts(title='星巴克全球分布图',pos_left='center'),
- visualmap_opts=opts.VisualMapOpts(range_text=['门店数量'],
- is_piecewise=True, #分段显示
- pieces=[{'min':1000},{'min':500,'max':1000},
- {'min':100,'max':500},{'max': 100}]))
- map.render('ccc.html')
- # 空值填充
- df_t = df.fillna(value=dict(county_name='NA', city_name='NA'))
- df_t = df_t.groupby(['Country', 'City'])['Brand'].count().reset_index()
-
- data = []
- country = []
- # 数据处理成Pyecharts需要的格式
- for idx, row in df_t.iterrows():
- if row['Country'] in country:
- data[-1]['children'].append(dict(name=row['City'], value=row['Brand']))
- else:
- data.append(dict(name=row['Country'], children=[dict(name=row['City'], value=row['Brand'])]))
- country.append(row['Country'])
-
- tree = TreeMap()
- tree.add('星巴克门店',data,leaf_depth=1, # 叶子节点深度 国家和城市两层,深度为1
- label_opts=opts.LabelOpts(position="inside",formatter='{b}:{c}门店'), # 标签设置
- levels=[ # 针对每一层的样式设置
- opts.TreeMapLevelsOpts(
- treemap_itemstyle_opts=opts.TreeMapItemStyleOpts(
- border_color="#555",border_width=4,gap_width=4)),
- opts.TreeMapLevelsOpts(
- color_saturation=[0.3, 0.6], # 颜色饱和度范围
- treemap_itemstyle_opts=opts.TreeMapItemStyleOpts(
- border_color_saturation=0.7,gap_width=2,border_width=2))])
-
- tree.set_global_opts(title_opts=opts.TitleOpts(title="各国/地区星巴克门店数量(可点击下钻到城市)"),
- legend_opts=opts.LegendOpts(is_show=False))
- tree.render('hhh.html')
- b = list(df.City.value_counts().to_dict().items())[0:15]
- data = dict(b)
- print(list(data.keys()))
- bar = Bar()
- bar.add_xaxis(list(data.keys()))
- bar.add_yaxis('', list(data.values()), label_opts=opts.LabelOpts(position='right'))
- bar.set_global_opts(title_opts=opts.TitleOpts(title='门店数量在前15的城市'),
- xaxis_opts=opts.AxisOpts(position='top'),
- yaxis_opts=opts.AxisOpts(is_inverse=True),
- visualmap_opts=opts.VisualMapOpts(is_show=False, dimension=0, max_=300,
- range_color=['#FFE7D3','#7A0616']))
- bar.reversal_axis()
- bar.render('ddd.html')
- c = list(df['Ownership Type'].value_counts().to_dict().items())
- d = df.groupby('Ownership Type').Brand.agg('count').sort_values(ascending=False)
- print(c)
- p = Pie()
- p.add('', c, rosetype='area',label_opts=opts.LabelOpts(formatter='{b}:{d}%'), radius=['10%', '45%'])
- p.set_global_opts(title_opts=opts.TitleOpts(title='门店所有权占比'))
- p.render('eee.html')
- df_china = df[df['Country'] == 'CN']
- a = df_china.groupby(['Longitude', 'Latitude']).Brand.value_counts()
- print(list(a.to_dict().items()))
- jwd, data = [], []
- for i ,j in list(a.to_dict().items()):
- jwd.append((str(i[0])+'-'+str(i[1]), i[0], i[1]))
- data.append((str(i[0])+'-'+str(i[1]), j))
-
- geo = Geo()
- for i in jwd:
- geo.add_coordinate(i[0], i[1], i[2])
- geo.add_schema(maptype='china', is_roam=False)
- geo.add('', data, type_='heatmap', is_large=True,
- blur_size=10,
- point_size=2,)
- geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=False, max_=1))
- geo.render('fff.html')
- e = list(df[df['Country'] == 'CN']['City'].value_counts().to_dict().items())[0:20]
- print(e)
- bar2 = Bar()
- bar2.add_xaxis(list(dict(e).keys()))
- bar2.add_yaxis('', list(dict(e).values()), label_opts=opts.LabelOpts(position='right'))
- bar2.set_global_opts(yaxis_opts=opts.AxisOpts(is_inverse=True),
- xaxis_opts=opts.AxisOpts(position='top'),
- visualmap_opts=opts.VisualMapOpts(is_show=False, dimension=0, max_=300))
- bar2.reversal_axis()
- bar2.render('ggg.html')