下面是用bert 训练listwise rank 的 demo
- import torch
- from torch.utils.data import DataLoader, Dataset
- from transformers import BertModel, BertTokenizer
- from sklearn.metrics import pairwise_distances_argmin_min
-
- class ListwiseRankingDataset(Dataset):
- def __init__(self, queries, documents, labels, tokenizer, max_length):
- self.input_ids = []
- self.attention_masks = []
- self.labels = []
-
- for query, doc_list, label_list in zip(queries, documents, labels):
- for doc, label in zip(doc_list, label_list):
- encoded_pair = tokenizer(query, doc, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
- self.input_ids.append(encoded_pair['input_ids'])
- self.attention_masks.append(encoded_pair['attention_mask'])
- self.labels.append(label)
-
- self.input_ids = torch.cat(self.input_ids, dim=0)
- self.attention_masks = torch.cat(self.attention_masks, dim=0)
- self.labels = torch.tensor(self.labels)
-
- def __len__(self):
- return len(self.input_ids)
-
- def __getitem__(self, idx):
- input_id = self.input_ids[idx]
- attention_mask = self.attention_masks[idx]
- label = self.labels[idx]
- return input_id, attention_mask, label
-
- class BERTListwiseRankingModel(torch.nn.Module):
- def __init__(self, bert_model_name):
- super(BERTListwiseRankingModel, self).__init__()
- self.bert = BertModel.from_pretrained(bert_model_name)
- self.dropout = torch.nn.Dropout(0.1)
- self.fc = torch.nn.Linear(self.bert.config.hidden_size, 1)
-
- def forward(self, input_ids, attention_mask):
- outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
- pooled_output = self.dropout(outputs[1])
- logits = self.fc(pooled_output)
- return logits.squeeze()
-
- # 初始化BERT模型和分词器
- bert_model_name = 'bert-base-uncased'
- tokenizer = BertTokenizer.from_pretrained(bert_model_name)
-
- # 示例输入数据
- queries = ['I like cats', 'The sun is shining']
- documents = [['I like dogs', 'Dogs are cute'], ['It is raining', 'Rainy weather is gloomy']]
- labels = [[1, 0], [0, 1]]
-
- # 超参数
- batch_size = 8
- max_length = 128
- learning_rate = 1e-5
- num_epochs = 5
-
- # 创建数据集和数据加载器
- dataset = ListwiseRankingDataset(queries, documents, labels, tokenizer, max_length)
- dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
-
- # 初始化模型并加载预训练权重
- model = BERTListwiseRankingModel(bert_model_name)
- optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
-
- # 训练模型
- model.train()
-
- for epoch in range(num_epochs):
- total_loss = 0
-
- for input_ids, attention_masks, labels in dataloader:
- optimizer.zero_grad()
-
- logits = model(input_ids, attention_masks)
-
- # 计算损失函数(使用交叉熵损失函数)
- loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, labels.float())
-
- total_loss += loss.item()
-
- loss.backward()
- optimizer.step()
-
- print(f"Epoch {epoch+1}/{num_epochs} - Loss: {total_loss:.4f}")
-
- # 推断模型
- model.eval()
-
- with torch.no_grad():
- embeddings = model.bert.embeddings.word_embeddings(dataset.input_ids)
- pairwise_distances = pairwise_distances_argmin_min(embeddings.numpy())
-
- # 输出结果
- for i, query in enumerate(queries):
- print(f"Query: {query}")
- print("Documents:")
-
- for j, doc in enumerate(documents[i]):
- doc_idx = pairwise_distances[0][i * len(documents[i]) + j]
- doc_dist = pairwise_distances[1][i * len(documents[i]) + j]
-
- print(f"Document index: {doc_idx}, Distance: {doc_dist:.4f}")
- print(f"Document: {doc}")
- print("")
-
- print("---------")