• 日撸java_day66-68


    主动学习ALEC

    代码

    package machineLearning.activelearning;
    
    import weka.core.Instances;
    
    import java.io.FileReader;
    import java.io.IOException;
    import java.util.Arrays;
    
    /**
     * ClassName: Alec
     * Package: machineLearning.activelearning
     * Description: Active learning through density clustering.
     *
     * @Author: luv_x_c
     * @Create: 2023/8/21 14:26
     */
    public class Alec {
        /**
         * The whole dataset.
         */
        Instances dataset;
    
        /**
         * The maximal number of queries that can be provided.
         */
        int maxNumQuery;
    
    
        /**
         * The actual number of queries.
         */
        int numQuery;
    
        /**
         * The radius, also dc in the paper. It is employed for density computation.
         */
        double radius;
    
        /**
         * The densities of instances.
         */
        double[] densities;
    
        /**
         * DistanceToMaster
         */
        double[] distanceToMaster;
    
        /**
         * Sorted indices, where the first element indicates the instance with the biggest density,
         */
        int[] descendantDensities;
    
        /**
         * Priority.
         */
        double[] priority;
    
        /**
         * The maximal distance between any pair of points.
         */
        double maximalDistance;
    
        /**
         * Who is my master?
         */
        int[] masters;
    
        /**
         * Predicted labels.
         */
        int[] predictedLabels;
    
        /**
         * Instance status. 0 for unprocessed, 1 for queried, 2 for classified.
         */
        int[] instanceStatusArray;
    
        /**
         * The descendant indices to show the representatives of instances in a descendant order.
         */
        int[] descendantRepresentatives;
    
        /**
         * Indicate the cluster of each instance. It is only used in clusterInTwo(int[]).
         */
        int[] clusterIndices;
    
        /**
         * Blocks with size more than this threshold should not be split further.
         */
        int smallBlockThreshold = 3;
    
        /**
         * The constructor.
         *
         * @param paraFileName The data filename.
         */
        public Alec(String paraFileName) {
            try {
                FileReader fileReader = new FileReader(paraFileName);
                dataset = new Instances(fileReader);
                dataset.setClassIndex(dataset.numAttributes() - 1);
                fileReader.close();
            } catch (IOException e) {
                throw new RuntimeException(e);
            }//Of try
    
            computeMaximalDistance();
            clusterIndices = new int[dataset.numInstances()];
        }//OF the constructor
    
        /**
         * Merge sort in descendant order to obtain an index array. The original array  is unchanged.
         * The method should be tested further.
         *
         * @param paraArray The original array.
         * @return The sorted indices.
         */
        public static int[] mergeSortToIndices(double[] paraArray) {
            int tempLength = paraArray.length;
            int[][] resultMatrix = new int[2][tempLength];
    
            // Initialize
            int tempIndex = 0;
            for (int i = 0; i < tempLength; i++) {
                resultMatrix[tempIndex][i] = i;
            }//Of for i
    
            // Merge
            int tempCurrentLength = 1;
            // The indices for current merged groups.
            int tempFirstStart, tempSecondStart, tempSecondEnd;
    
            while (tempCurrentLength < tempLength) {
                // Divide into a number of groups.
                // Here the boundary is adaptive to array length not equal to 2^k
                for (int i = 0; i < Math.ceil((tempLength + 0.0) / tempCurrentLength / 2); i++) {
                    // Boundaries of the group
                    tempFirstStart = i * tempCurrentLength * 2;
    
                    tempSecondStart = tempFirstStart + tempCurrentLength;
    
                    tempSecondEnd = tempSecondStart + tempCurrentLength - 1;
                    if (tempSecondEnd >= tempLength) {
                        tempSecondEnd = tempLength - 1;
                    }//Of if
    
                    // Merge this group
                    int tempFirstIndex = tempFirstStart;
                    int tempSecondIndex = tempSecondStart;
                    int tempCurrentIndex = tempFirstStart;
    
                    if (tempSecondStart >= tempLength) {
                        for (int j = tempFirstIndex; j < tempLength; j++) {
                            resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                    resultMatrix[tempIndex % 2][j];
                            tempFirstIndex++;
                            tempCurrentIndex++;
                        }//OF for j
                        break;
                    }//OF if
    
                    while ((tempFirstIndex <= tempSecondStart - 1) && (tempSecondIndex <= tempSecondEnd)) {
                        if (paraArray[resultMatrix[tempIndex % 2][tempFirstIndex]] >= paraArray[resultMatrix[tempIndex % 2][tempSecondIndex]]) {
                            resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                    resultMatrix[tempIndex % 2][tempFirstIndex];
                            tempFirstIndex++;
                        } else {
                            resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                    resultMatrix[tempIndex % 2][tempSecondIndex];
                            tempSecondIndex++;
                        }//Of if
                        tempCurrentIndex++;
                    }//Of while
    
                    // Remaining part
                    for (int j = tempFirstIndex; j < tempSecondStart; j++) {
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                resultMatrix[tempIndex % 2][j];
                        tempCurrentIndex++;
                    }//Of for j
                    for (int j = tempSecondIndex; j <= tempSecondEnd; j++) {
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                resultMatrix[tempIndex % 2][j];
                        tempCurrentIndex++;
                    }//Of for j
                }//Of for i
    
                tempCurrentLength *= 2;
                tempIndex++;
            }//Of while
    
            return resultMatrix[tempIndex % 2];
        }//Of mergeSortToIndices
    
        /**
         * The Euclidean distance between two instances.
         *
         * @param paraI The index of the first instance.
         * @param paraJ The index of the second instance.
         * @return The distance.
         */
        public double distance(int paraI, int paraJ) {
            double resultDistance = 0;
            double tempDifference;
            for (int i = 0; i < dataset.numAttributes() - 1; i++) {
                tempDifference = dataset.instance(paraI).value(i) - dataset.instance(paraJ).value(i);
                resultDistance += tempDifference * tempDifference;
            }//Of for i
            resultDistance = Math.sqrt(resultDistance);
    
            return resultDistance;
        }//Of distance
    
        /**
         * Compute the maximal distance. The result is stored in a member variable.
         */
        public void computeMaximalDistance() {
            maximalDistance = 0;
            double tempDistance;
            for (int i = 0; i < dataset.numInstances(); i++) {
                for (int j = 0; j < dataset.numInstances(); j++) {
                    tempDistance = distance(i, j);
                    if (maximalDistance < tempDistance) {
                        maximalDistance = tempDistance;
                    }//Of if
                }//Of for j
            }//Of for i
    
            System.out.println("maximalDistance = " + maximalDistance);
        }//Of computeMaximalDistance
    
        /**
         * Compute the densities using Gaussian kernel.
         */
        public void computeDensitiesGaussian() {
            System.out.println("Radius = " + radius);
            densities = new double[dataset.numInstances()];
            double tempDistance;
    
            for (int i = 0; i < dataset.numInstances(); i++) {
                for (int j = 0; j < dataset.numInstances(); j++) {
                    tempDistance = distance(i, j);
                    densities[i] += Math.exp(-tempDistance * tempDistance / radius / radius);
                }//Of for j
            }//OF for i
    
            System.out.println("The densities are: " + Arrays.toString(densities) + "\r\n");
        }//Of computeDensitiesGaussian
    
        /**
         * \
         * Compute distanceToMaster, the distance to its master.
         */
        public void computeDistanceToMaster() {
            distanceToMaster = new double[dataset.numInstances()];
            masters = new int[dataset.numInstances()];
            descendantDensities = new int[dataset.numInstances()];
            instanceStatusArray = new int[dataset.numInstances()];
    
            descendantDensities = mergeSortToIndices(densities);
            distanceToMaster[descendantDensities[0]] = maximalDistance;
    
            double tempDistance;
            for (int i = 1; i < dataset.numInstances(); i++) {
                // Initialize
                distanceToMaster[descendantDensities[i]] = maximalDistance;
                for (int j = 0; j <= i - 1; j++) {
                    tempDistance = distance(descendantDensities[i], descendantDensities[j]);
                    if (distanceToMaster[descendantDensities[i]] > tempDistance) {
                        distanceToMaster[descendantDensities[i]] = tempDistance;
                        masters[descendantDensities[i]] = descendantDensities[j];
                    }//Of if
                }//Of  for j
            }//Of for i
            System.out.println("First compute, masters = " + Arrays.toString(masters));
            System.out.println("descendantDensities = " + Arrays.toString(descendantDensities));
        }//Of computeDistanceToMaster
    
        /**
         * Compute priority. Element with higher priority is more likely to be
         * selected as a cluster center. Now it is rho * distanceToMaster. It can
         * also be rho^alpha * distanceToMaster.
         */
        public void computePriority() {
            priority = new double[dataset.numInstances()];
            for (int i = 0; i < dataset.numInstances(); i++) {
                priority[i] = densities[i] * distanceToMaster[i];
            }//Of for i
        }//Of computePriority
    
        /**
         * The block of a node should be same as its master. This recursive method is efficient.
         *
         * @param paraIndex The index of the given node.
         * @return The cluster index of the current node.
         */
        public int coincideWithMaster(int paraIndex) {
            if (clusterIndices[paraIndex] == -1) {
                int tempMaster = masters[paraIndex];
                clusterIndices[paraIndex] = coincideWithMaster(tempMaster);
            }//Of if
    
            return clusterIndices[paraIndex];
        }//Of coincideWithMaster
    
        /**
         * Cluster a block in two. According to the master tree.
         *
         * @param paraBlock The given block.
         * @return The new blocks where the two most represent instances serve as
         * the root.
         */
        public int[][] clusterInTwo(int[] paraBlock) {
            //Reinitialize. In fact, only instances in the given block is considered.
            Arrays.fill(clusterIndices, -1);
    
            // Initialize the cluster number of the two roots.
            for (int i = 0; i < 2; i++) {
                clusterIndices[paraBlock[i]] = i;
            }//Of for i
    
            for (int i = 0; i < paraBlock.length; i++) {
                if (clusterIndices[paraBlock[i]] != -1) {
                    // Already have a cluster number
                    continue;
                }//Of if
    
                clusterIndices[paraBlock[i]] = coincideWithMaster(masters[paraBlock[i]]);
            }//Of for i
    
            // The sub blocks.
            int[][] resultBlocks = new int[2][];
            int tempFirstBlockCount = 0;
            for (int i = 0; i < clusterIndices.length; i++) {
                if (clusterIndices[i] == 0) {
                    tempFirstBlockCount++;
                }//Of if
            }//Of for i
            resultBlocks[0] = new int[tempFirstBlockCount];
            resultBlocks[1] = new int[paraBlock.length - tempFirstBlockCount];
    
            int tempFirstIndex = 0;
            int tempSecondIndex = 0;
            for (int i = 0; i < paraBlock.length; i++) {
                if (clusterIndices[paraBlock[i]] == 0) {
                    resultBlocks[0][tempFirstIndex] = paraBlock[i];
                    tempFirstIndex++;
                } else {
                    resultBlocks[1][tempSecondIndex] = paraBlock[i];
                    tempSecondIndex++;
                } // Of if
            } // Of for i
    
            System.out.println("Split (" + paraBlock.length + ") instances "
                    + Arrays.toString(paraBlock) + "\r\nto (" + resultBlocks[0].length + ") instances "
                    + Arrays.toString(resultBlocks[0]) + "\r\nand (" + resultBlocks[1].length
                    + ") instances " + Arrays.toString(resultBlocks[1]));
            return resultBlocks;
        }//Of clusterInTwo
    
        /**
         * Classify instances in the block by simple voting.
         *
         * @param paraBlock The given block.
         */
        public void vote(int[] paraBlock) {
            int[] tempClassCounts = new int[dataset.numClasses()];
            for (int i = 0; i < paraBlock.length; i++) {
                if (instanceStatusArray[paraBlock[i]] == 1) {
                    tempClassCounts[(int) dataset.instance(paraBlock[i]).classValue()]++;
                }//Of if
            }//Of for i
    
            int tempMaxClass = -1;
            int tempMaxCount = -1;
            for (int i = 0; i < tempClassCounts.length; i++) {
                if (tempMaxCount < tempClassCounts[i]) {
                    tempMaxClass = i;
                    tempMaxCount = tempClassCounts[i];
                }//Of if
            }//Of for i
    
            // Classify unprocessed instances.
            for (int i = 0; i < paraBlock.length; i++) {
                if (instanceStatusArray[paraBlock[i]] == 0) {
                    predictedLabels[paraBlock[i]] = tempMaxClass;
                    instanceStatusArray[paraBlock[i]] = 2;
                }//Of if
            }//Of for i
        }// Of vote
    
        /**
         * Cluster based active learning.
         *
         * @param paraRatio               The ratio of the maximal distance as the dc.
         * @param paraMaxNumQuery         The maximal number of queries for the whole dataset.
         * @param paraSmallBlockThreshold The small block threshold.
         */
        public void clusterBasedActiveLearning(double paraRatio, int paraMaxNumQuery,
                                               int paraSmallBlockThreshold) {
            radius = maximalDistance * paraRatio;
            smallBlockThreshold = paraSmallBlockThreshold;
    
            maxNumQuery = paraMaxNumQuery;
            predictedLabels = new int[dataset.numInstances()];
    
            for (int i = 0; i < dataset.numInstances(); i++) {
                predictedLabels[i] = -1;
            }//Of for i
    
            computeDensitiesGaussian();
            computeDistanceToMaster();
            computePriority();
            descendantRepresentatives = mergeSortToIndices(priority);
            System.out.println("descendantRepresentatives = " + Arrays.toString(descendantRepresentatives));
    
            numQuery = 0;
            clusterBasedActiveLearning(descendantRepresentatives);
        }//Of clusterBasedActiveLearning
    
        /**
         * Cluster based active learning.
         *
         * @param paraBlock The given block. This block must be sorted according to the priority in
         *                  descendant order.
         */
        public void clusterBasedActiveLearning(int[] paraBlock) {
            System.out.println("clusterBasedActiveLearning for block " + Arrays.toString(paraBlock));
    
            // Step1. How many labels are queried for this block.
            int tempExceptedQueries = (int) Math.sqrt(paraBlock.length);
            int tempNumQuery = 0;
            for (int i = 0; i < paraBlock.length; i++) {
                if (instanceStatusArray[paraBlock[i]] == 1) {
                    tempNumQuery++;
                }//Of if
            }//Of for i
    
            // Step2. Vote for small blocks.
            if ((tempNumQuery >= tempExceptedQueries) && (paraBlock.length <= smallBlockThreshold)) {
                System.out.println("" + tempNumQuery + " instances are queried, vote for block: \r\n" + Arrays.toString(paraBlock));
                vote(paraBlock);
    
                return;
            }//Of if
    
            // Step3. Query enough labels.
            for (int i = 0; i < tempExceptedQueries; i++) {
                if (numQuery >= maxNumQuery) {
                    System.out.println("No more queries are provided, numQuery =" + numQuery + ".");
                    vote(paraBlock);
                    return;
                }//Of if
    
                if (instanceStatusArray[paraBlock[i]] == 0) {
                    instanceStatusArray[paraBlock[i]] = 1;
                    predictedLabels[paraBlock[i]] = (int) dataset.instance(paraBlock[i]).classValue();
                    numQuery++;
                }//Of if
            }//Of for i
    
            // Step4. Pure?
            int tempFirstLabel = predictedLabels[paraBlock[0]];
            boolean tempPure = true;
            for (int i = 1; i < tempExceptedQueries; i++) {
                if (predictedLabels[paraBlock[i]] != tempFirstLabel) {
                    tempPure = false;
                    break;
                }//Of if
            }// Of for i
    
            if (tempPure) {
                System.out.println("Classify for pure block: " + Arrays.toString(paraBlock));
                for (int i = tempExceptedQueries; i < paraBlock.length; i++) {
                    if (instanceStatusArray[paraBlock[i]] == 0) {
                        predictedLabels[paraBlock[i]] = tempFirstLabel;
                        instanceStatusArray[paraBlock[i]] = 2;
                    }//Of if
                }//Of for i
                return;
            }//OF if
    
            // Step5. Split in two and process them independently
            int[][] tempBlocks = clusterInTwo(paraBlock);
            for (int i = 0; i < 2; i++) {
                // Attention : recursive invoking here.
                clusterBasedActiveLearning(tempBlocks[i]);
            }// Of for i
        }// Of clusterBasedActiveLearning
    
        @Override
        public String toString() {
            int[] tempStatusCounts = new int[3];
            double tempCorrect = 0;
            for (int i = 0; i < dataset.numInstances(); i++) {
                tempStatusCounts[instanceStatusArray[i]]++;
                if (predictedLabels[i] == (int) dataset.instance(i).classValue()) {
                    tempCorrect++;
                }//Of if
            }//Of for i
    
            String resultString =
                    "(unhandled, queried, classified) =" + Arrays.toString(tempStatusCounts);
            resultString += "\r\nCorrect = " + tempCorrect + ", accuracy = " + (tempCorrect / dataset.numInstances());
    
            return resultString;
        }// OF toString
    
        /**
         * The entrance of the program.
         *
         * @param args Not used.
         */
        public static void main(String[] args) {
            long tempStart = System.currentTimeMillis();
    
            System.out.println("Start ALEC.");
            String arffFilename = "E:\\java_code\\data\\sampledata\\iris.arff";
    
            Alec tempAlec = new Alec(arffFilename);
    
            tempAlec.clusterBasedActiveLearning(0.15, 30, 3);
    
            System.out.println(tempAlec);
    
            long tempEnd = System.currentTimeMillis();
            System.out.println("Runtime: " + (tempEnd - tempStart) + "ms.");
        }// Of main
    }// Of class Alec
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532

    运行结果

    在这里插入图片描述

  • 相关阅读:
    YOLO7 口罩识别实战
    GoLong的学习之路(一)语法之变量与常量
    深度强化学习极简入门(十一)——策略梯度方法REINFORCE【附代码】
    【C语言】通讯录的简单实现
    毕设 连锁酒店
    [C#]使用OpenCvSharp图像滤波中值滤波均值滤波高通滤波双边滤波锐化滤波自定义滤波
    Oracle数据库简介
    webpack性能优化之打包优化
    SpringMVC入门
    Android Room数据库的集成与使用介绍
  • 原文地址:https://blog.csdn.net/weixin_58320200/article/details/132802144