• 【动手学深度学习】--长短期记忆网络LSTM


    长短期记忆网络LSTM

    学习视频:长短期记忆网络(LSTM)【动手学深度学习v2】

    官方笔记:长短期记忆网络(LSTM)

    长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题,解决这一问题的最早方法之一是长短期存储器(LSTM),它有许多与GRU一样的属性,有趣的是,长短期记忆网络的设计比门控循环单元稍微复杂一些, 却比门控循环单元早诞生了近20年。

    1.门控记忆元

    可以说,长短期记忆网络的设计灵感来自于计算机的逻辑门。 长短期记忆网络引入了记忆元(memory cell),或简称为单元(cell)。 有些文献认为记忆元是隐状态的一种特殊类型, 它们与隐状态具有相同的形状,其设计目的是用于记录附加的信息。 为了控制记忆元,我们需要许多门。 其中一个门用来从单元中输出条目,我们将其称为输出门(output gate)。 另外一个门用来决定何时将数据读入单元,我们将其称为输入门(input gate)。 我们还需要一种机制来重置单元的内容,由遗忘门(forget gate)来管理, 这种设计的动机与门控循环单元相同, 能够通过专用机制决定什么时候记忆或忽略隐状态中的输入。

    1.1输入门、忘记门、输出门

    • 忘记门:将值朝0减少
    • 输入门:决定不是忽略掉输入数据
    • 输出门:决定是不是使用隐状态

    就如在门控循环单元中一样, 当前时间步的输入和前一个时间步的隐状态 作为数据送入长短期记忆网络的门中,如下图所示, 它们由三个具有sigmoid激活函数的全连接层处理, 以计算输入门、遗忘门和输出门的值。 因此,这三个门的值都在(0,1)的范围内。

    image-20230909153058460

    1.2候选记忆元

    image-20230909153136156

    1.3记忆元

    image-20230909153206499

    1.4隐状态

    image-20230909153227773

    2.从零实现

    2.1加载数据集

    import torch
    from torch import nn
    from d2l import torch as d2l
    
    batch_size, num_steps = 32, 35
    train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    2.2初始化模型参数

    接下来,我们需要定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。

    def get_lstm_params(vocab_size, num_hiddens, device):
        num_inputs = num_outputs = vocab_size
    
        def normal(shape):
            return torch.randn(size=shape, device=device)*0.01
    
        def three():
            return (normal((num_inputs, num_hiddens)),
                    normal((num_hiddens, num_hiddens)),
                    torch.zeros(num_hiddens, device=device))
    
        W_xi, W_hi, b_i = three()  # 输入门参数
        W_xf, W_hf, b_f = three()  # 遗忘门参数
        W_xo, W_ho, b_o = three()  # 输出门参数
        W_xc, W_hc, b_c = three()  # 候选记忆元参数
        # 输出层参数
        W_hq = normal((num_hiddens, num_outputs))
        b_q = torch.zeros(num_outputs, device=device)
        # 附加梯度
        params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
                  b_c, W_hq, b_q]
        for param in params:
            param.requires_grad_(True)
        return params
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    2.3定义模型

    在初始化函数中, 长短期记忆网络的隐状态需要返回一个额外的记忆元, 单元的值为0,形状为(批量大小,隐藏单元数)。 因此,我们得到以下的状态初始化。

    def init_lstm_state(batch_size, num_hiddens, device):
        return (torch.zeros((batch_size, num_hiddens), device=device),
                torch.zeros((batch_size, num_hiddens), device=device))
    
    • 1
    • 2
    • 3

    实际模型的定义与我们前面讨论的一样: 提供三个门和一个额外的记忆元。 请注意,只有隐状态才会传递到输出层, 而记忆元 C t C_t Ct不直接参与输出计算。

    def lstm(inputs, state, params):
        [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
         W_hq, b_q] = params
        (H, C) = state
        outputs = []
        for X in inputs:
            I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
            F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
            O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
            C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
            C = F * C + I * C_tilda
            H = O * torch.tanh(C)
            Y = (H @ W_hq) + b_q
            outputs.append(Y)
        return torch.cat(outputs, dim=0), (H, C)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    2.4 训练与预测

    vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
    num_epochs, lr = 500, 1
    model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                                init_lstm_state, lstm)
    d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    image-20230909153543972

    3.简洁实现

    使用高级API,我们可以直接实例化LSTM模型。 高级API封装了前文介绍的所有配置细节。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。

    num_inputs = vocab_size
    lstm_layer = nn.LSTM(num_inputs, num_hiddens)
    model = d2l.RNNModel(lstm_layer, len(vocab))
    model = model.to(device)
    d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    image-20230909153613692

  • 相关阅读:
    动态规划之子序列
    HDFS学习笔记(五):Yarn架构原理
    地图制图基础(四):制图意识
    在springboot中使用拦截器
    特征提取PCA实现及避坑指南
    伺服阀放大器控制器放大板
    Prometheus metrics数据抓取解析
    JavaScript 20 JavaScript 字符串搜索
    Docker配置国内代理解决办法
    Django系列1-Django概述
  • 原文地址:https://blog.csdn.net/qq_46656857/article/details/132778300