PgSQL-并行查询系列-介绍
现代CPU模型拥有大量的CPU核心。多年来,数据库应用程序都是并发向数据库发送查询的。查询处理多个表的行时,若可以使用多核,则可以客观地提升性能。PgSQL 9.6引入了并行查询的新特性,开启并行查询后可以大幅提升性能。
1)若所有CPU核心已经饱和,则不要启动并行查询。并行执行会从其他查询中窃取CPU时间,并增加响应时间
2)进一步需要注意:并行处理会显著增加内存使用(需要注意work_mem的值)。因为,每个hash join或者排序操作都会使用work_mem大小的内存。
3)低延迟的OLTP查询并不能通过并行显著提升性能。特别是仅返回1行的查询,若启用并行,性能会变得特烂。
4)并行执行仅支持没有锁谓词的SELECT查询
5)不支持cursor和会挂起的查询
6)windowed 函数和ordered-set聚合函数都不是并行的
7)对于负载已达IO瓶颈的,并没有啥好处
8)没有并行排序算法。然而,排序查询在某些方面仍然可以并行
9)将CTE(WITH...)替换为sub-select以支持并行执行
10)FDW还不支持并行(后面版本可以,注意哪个版本支持)
11)full outer join不支持
12)客户端设置了max_rows,禁止并行执行
13)如果查询中使用了没有标记为PARALLEL SAFE的函数,那他就是单线程执行
14)SERIALIZABLE事务隔离级别禁用并行执行
并行顺序扫描很快,原因可能不是并行读,而是将数据访问分散到多个CPU上。现代操作系统给PgSQL的数据文件提供了很好的缓冲机制。预取允许从存储中获取一个块,而不仅是PgSQL请求的块。因此查询性能限制往往不在IO上,它消耗CPU周期:从表数据页中逐行读取;比较行值和WHERE条件
我们执行一个简单查询:
- tpch=# explain analyze select l_quantity as sum_qty from lineitem where l_shipdate <= date '1998-12-01' - interval '105' day;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------
- Seq Scan on lineitem (cost=0.00..1964772.00 rows=58856235 width=5) (actual time=0.014..16951.669 rows=58839715 loops=1)
- Filter: (l_shipdate <= '1998-08-18 00:00:00'::timestamp without time zone)
- Rows Removed by Filter: 1146337
- Planning Time: 0.203 ms
- Execution Time: 19035.100 ms
一个顺序扫描,没有聚合,需要产生大量行。因此该查询被一个CPU核心执行。添加聚合SUM()后,可以清晰的看到有2个进程帮助查询:
- explain analyze select sum(l_quantity) as sum_qty from lineitem where l_shipdate <= date '1998-12-01' - interval '105' day;
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=1589702.14..1589702.15 rows=1 width=32) (actual time=8553.365..8553.365 rows=1 loops=1)
- -> Gather (cost=1589701.91..1589702.12 rows=2 width=32) (actual time=8553.241..8555.067 rows=3 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Partial Aggregate (cost=1588701.91..1588701.92 rows=1 width=32) (actual time=8547.546..8547.546 rows=1 loops=3)
- -> Parallel Seq Scan on lineitem (cost=0.00..1527393.33 rows=24523431 width=5) (actual time=0.038..5998.417 rows=19613238 loops=3)
- Filter: (l_shipdate <= '1998-08-18 00:00:00'::timestamp without time zone)
- Rows Removed by Filter: 382112
- Planning Time: 0.241 ms
- Execution Time: 8555.131 ms
性能提升2.2倍。
“Parallel Seq Scan”节点为partial aggregation提供行。“Partial Aggregate”节点先对SUM()进行一次操作。最后“Gather”节点汇总每个进程的SUM值。“Finalize Aggregate”节点进行最后计算。如果你使用了聚合函数,不要忘记标记他们为“parallel safe”。
可以不重启服务,增加并行进程个数:
- alter system set max_parallel_workers_per_gather=4;
- select * from pg_reload_conf();
- Now, there are 4 workers in explain output:
- tpch=# explain analyze select sum(l_quantity) as sum_qty from lineitem where l_shipdate <= date '1998-12-01' - interval '105' day;
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=1440213.58..1440213.59 rows=1 width=32) (actual time=5152.072..5152.072 rows=1 loops=1)
- -> Gather (cost=1440213.15..1440213.56 rows=4 width=32) (actual time=5151.807..5153.900 rows=5 loops=1)
- Workers Planned: 4
- Workers Launched: 4
- -> Partial Aggregate (cost=1439213.15..1439213.16 rows=1 width=32) (actual time=5147.238..5147.239 rows=1 loops=5)
- -> Parallel Seq Scan on lineitem (cost=0.00..1402428.00 rows=14714059 width=5) (actual time=0.037..3601.882 rows=11767943 loops=5)
- Filter: (l_shipdate <= '1998-08-18 00:00:00'::timestamp without time zone)
- Rows Removed by Filter: 229267
- Planning Time: 0.218 ms
- Execution Time: 5153.967 ms
我们将并发进程由2改成了4,但是查询仅快1.6599倍。实际上,我们有2个进程+一个leader,配置改好成为4+1。并行最大提升可以:5/3=1.66倍。
查询执行总是从“leader”进程开始。Leader进程执行所有非并行动作。其他进程执行相同查询,称为“worker”进程。并行利用Dynamic Backgroud workers基础架构(9.4引入)执行。因此创建3个工作进程的查询可能比传统执行快4倍。
Worker进程使用消息队列(基于共享内存)和leader进行通信。每个进程有2个队列:一个为errors,另一个是tuples。
1)max_parallel_workers_per_gather是workers进程数的最小限制
2)查询执行使用的workers限制为max_parallel_workes
3)最上层的限制是max_worker_processes:后台进程的总数
分配进程失败,会导致使用单进程执行。查询规划器会根据表或索引大小来增加worker个数。min_parallel_table_scan_size和min_parallel_index_scan_size控制该行为。
- set min_parallel_table_scan_size='8MB'
- 8MB table => 1 worker
- 24MB table => 2 workers
- 72MB table => 3 workers
- x => log(x / min_parallel_table_scan_size) / log(3) + 1 worker
表比min_parallel_(index|table)_scan_size值每大3倍,PG增加一个worker进程。Workers进程个数不是基于成本的。循环依赖使得复杂的实现变得困难。相反,规划者使用简单的规则。
可以通过ALTER TABLE … SET (parallel_workers = N)来对某个表指定并行进程数。
除了并行限制外,PG还会检查代价:
parallel_setup_cost:避免短查询的并行执行。模拟用于内存设置、流程启动和初始通信的时间
parallel_tuple_cost:leader和worker之间通信可能花费很长时间。时间和worker发送的记录数成正比。参数对通信成本进行建模。
PgSQL9.6+可以以并行形式执行“Nested loop”。
- explain (costs off) select c_custkey, count(o_orderkey)
- from customer left outer join orders on
- c_custkey = o_custkey and o_comment not like '%special%deposits%'
- group by c_custkey;
- QUERY PLAN
- --------------------------------------------------------------------------------------
- Finalize GroupAggregate
- Group Key: customer.c_custkey
- -> Gather Merge
- Workers Planned: 4
- -> Partial GroupAggregate
- Group Key: customer.c_custkey
- -> Nested Loop Left Join
- -> Parallel Index Only Scan using customer_pkey on customer
- -> Index Scan using idx_orders_custkey on orders
- Index Cond: (customer.c_custkey = o_custkey)
- Filter: ((o_comment)::text !~~ '%special%deposits%'::text)
Gather发生在最后阶段,因此“Nested Loop Left Join”是并行操作。“Parallel Index Only Scan”在版本10才可以使用,和并行顺序扫描类似。c_custkey = o_custkey条件读取每个customer行的order列,因此不是并行。
PgSQL11中每个worker构建自己的hash table。因此,4+ workers不能提升性能。新的实现方式:使用一个共享hash table。每个worker可以利用WORK_MEM来构建hash table>
- select
- l_shipmode,
- sum(case
- when o_orderpriority = '1-URGENT'
- or o_orderpriority = '2-HIGH'
- then 1
- else 0
- end) as high_line_count,
- sum(case
- when o_orderpriority <> '1-URGENT'
- and o_orderpriority <> '2-HIGH'
- then 1
- else 0
- end) as low_line_count
- from
- orders,
- lineitem
- where
- o_orderkey = l_orderkey
- and l_shipmode in ('MAIL', 'AIR')
- and l_commitdate < l_receiptdate
- and l_shipdate < l_commitdate
- and l_receiptdate >= date '1996-01-01'
- and l_receiptdate < date '1996-01-01' + interval '1' year
- group by
- l_shipmode
- order by
- l_shipmode
- LIMIT 1;
-
-
- QUERY PLAN
-
- -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- Limit (cost=1964755.66..1964961.44 rows=1 width=27) (actual time=7579.592..7922.997 rows=1 loops=1)
- -> Finalize GroupAggregate (cost=1964755.66..1966196.11 rows=7 width=27) (actual time=7579.590..7579.591 rows=1 loops=1)
- Group Key: lineitem.l_shipmode
- -> Gather Merge (cost=1964755.66..1966195.83 rows=28 width=27) (actual time=7559.593..7922.319 rows=6 loops=1)
- Workers Planned: 4
- Workers Launched: 4
- -> Partial GroupAggregate (cost=1963755.61..1965192.44 rows=7 width=27) (actual time=7548.103..7564.592 rows=2 loops=5)
- Group Key: lineitem.l_shipmode
- -> Sort (cost=1963755.61..1963935.20 rows=71838 width=27) (actual time=7530.280..7539.688 rows=62519 loops=5)
- Sort Key: lineitem.l_shipmode
- Sort Method: external merge Disk: 2304kB
- Worker 0: Sort Method: external merge Disk: 2064kB
- Worker 1: Sort Method: external merge Disk: 2384kB
- Worker 2: Sort Method: external merge Disk: 2264kB
- Worker 3: Sort Method: external merge Disk: 2336kB
- -> Parallel Hash Join (cost=382571.01..1957960.99 rows=71838 width=27) (actual time=7036.917..7499.692 rows=62519 loops=5)
- Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)
- -> Parallel Seq Scan on lineitem (cost=0.00..1552386.40 rows=71838 width=19) (actual time=0.583..4901.063 rows=62519 loops=5)
- Filter: ((l_shipmode = ANY ('{MAIL,AIR}'::bpchar[])) AND (l_commitdate < l_receiptdate) AND (l_shipdate < l_commitdate) AND (l_receiptdate >= '1996-01-01'::date) AND (l_receiptdate < '1997-01-01 00:00:00'::timestamp without time zone))
- Rows Removed by Filter: 11934691
- -> Parallel Hash (cost=313722.45..313722.45 rows=3750045 width=20) (actual time=2011.518..2011.518 rows=3000000 loops=5)
- Buckets: 65536 Batches: 256 Memory Usage: 3840kB
- -> Parallel Seq Scan on orders (cost=0.00..313722.45 rows=3750045 width=20) (actual time=0.029..995.948 rows=3000000 loops=5)
- Planning Time: 0.977 ms
- Execution Time: 7923.770 ms
TPC-H中的SQL12是并行hash join的一个很好的哪里,每个进程都帮助构建共享hash table。
由于merge join的特性,使得不能并行。如果merge join是查询执行的最后阶段,那么不用担心,仍可以使用并行。
- -- Query 2 from TPC-H
- explain (costs off) select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
- from part, supplier, partsupp, nation, region
- where
- p_partkey = ps_partkey
- and s_suppkey = ps_suppkey
- and p_size = 36
- and p_type like '%BRASS'
- and s_nationkey = n_nationkey
- and n_regionkey = r_regionkey
- and r_name = 'AMERICA'
- and ps_supplycost = (
- select
- min(ps_supplycost)
- from partsupp, supplier, nation, region
- where
- p_partkey = ps_partkey
- and s_suppkey = ps_suppkey
- and s_nationkey = n_nationkey
- and n_regionkey = r_regionkey
- and r_name = 'AMERICA'
- )
- order by s_acctbal desc, n_name, s_name, p_partkey
- LIMIT 100;
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------
- Limit
- -> Sort
- Sort Key: supplier.s_acctbal DESC, nation.n_name, supplier.s_name, part.p_partkey
- -> Merge Join
- Merge Cond: (part.p_partkey = partsupp.ps_partkey)
- Join Filter: (partsupp.ps_supplycost = (SubPlan 1))
- -> Gather Merge
- Workers Planned: 4
- -> Parallel Index Scan using part_pkey on part
- Filter: (((p_type)::text ~~ '%BRASS'::text) AND (p_size = 36))
- -> Materialize
- -> Sort
- Sort Key: partsupp.ps_partkey
- -> Nested Loop
- -> Nested Loop
- Join Filter: (nation.n_regionkey = region.r_regionkey)
- -> Seq Scan on region
- Filter: (r_name = 'AMERICA'::bpchar)
- -> Hash Join
- Hash Cond: (supplier.s_nationkey = nation.n_nationkey)
- -> Seq Scan on supplier
- -> Hash
- -> Seq Scan on nation
- -> Index Scan using idx_partsupp_suppkey on partsupp
- Index Cond: (ps_suppkey = supplier.s_suppkey)
- SubPlan 1
- -> Aggregate
- -> Nested Loop
- Join Filter: (nation_1.n_regionkey = region_1.r_regionkey)
- -> Seq Scan on region region_1
- Filter: (r_name = 'AMERICA'::bpchar)
- -> Nested Loop
- -> Nested Loop
- -> Index Scan using idx_partsupp_partkey on partsupp partsupp_1
- Index Cond: (part.p_partkey = ps_partkey)
- -> Index Scan using supplier_pkey on supplier supplier_1
- Index Cond: (s_suppkey = partsupp_1.ps_suppkey)
- -> Index Scan using nation_pkey on nation nation_1
- Index Cond: (n_nationkey = supplier_1.s_nationkey)
“Merge Join”节点在“Gather Merge”上。因此merge不使用并行。但是“Parallel Index Scan”仍旧有助于part_pkey。
PgSQL11默认禁止partition-wise join特性。它有一个很高的规划代价。分区表可以一个分区一个分区的进行join。允许使用更小的hash table。每个per-partition join操作可以并行:
- tpch=# set enable_partitionwise_join=t;
- tpch=# explain (costs off) select * from prt1 t1, prt2 t2
- where t1.a = t2.b and t1.b = 0 and t2.b between 0 and 10000;
- QUERY PLAN
- ---------------------------------------------------
- Append
- -> Hash Join
- Hash Cond: (t2.b = t1.a)
- -> Seq Scan on prt2_p1 t2
- Filter: ((b >= 0) AND (b <= 10000))
- -> Hash
- -> Seq Scan on prt1_p1 t1
- Filter: (b = 0)
- -> Hash Join
- Hash Cond: (t2_1.b = t1_1.a)
- -> Seq Scan on prt2_p2 t2_1
- Filter: ((b >= 0) AND (b <= 10000))
- -> Hash
- -> Seq Scan on prt1_p2 t1_1
- Filter: (b = 0)
- tpch=# set parallel_setup_cost = 1;
- tpch=# set parallel_tuple_cost = 0.01;
- tpch=# explain (costs off) select * from prt1 t1, prt2 t2
- where t1.a = t2.b and t1.b = 0 and t2.b between 0 and 10000;
- QUERY PLAN
- -----------------------------------------------------------
- Gather
- Workers Planned: 4
- -> Parallel Append
- -> Parallel Hash Join
- Hash Cond: (t2_1.b = t1_1.a)
- -> Parallel Seq Scan on prt2_p2 t2_1
- Filter: ((b >= 0) AND (b <= 10000))
- -> Parallel Hash
- -> Parallel Seq Scan on prt1_p2 t1_1
- Filter: (b = 0)
- -> Parallel Hash Join
- Hash Cond: (t2.b = t1.a)
- -> Parallel Seq Scan on prt2_p1 t2
- Filter: ((b >= 0) AND (b <= 10000))
- -> Parallel Hash
- -> Parallel Seq Scan on prt1_p1 t1
- Filter: (b = 0)
分区连接只有在分区足够大的情况下才能使用并行执行
Parallel Append通常在UNION ALL中。缺点:较小的并行度,因为每个worker进程最终都为一个查询服务。即使启用了4个进程,也会仍旧发起2个:
- tpch=# explain (costs off) select sum(l_quantity) as sum_qty from lineitem where l_shipdate <= date '1998-12-01' - interval '105' day union all select sum(l_quantity) as sum_qty from lineitem where l_shipdate <= date '2000-12-01' - interval '105' day;
- QUERY PLAN
- ------------------------------------------------------------------------------------------------
- Gather
- Workers Planned: 2
- -> Parallel Append
- -> Aggregate
- -> Seq Scan on lineitem
- Filter: (l_shipdate <= '2000-08-18 00:00:00'::timestamp without time zone)
- -> Aggregate
- -> Seq Scan on lineitem lineitem_1
- Filter: (l_shipdate <= '1998-08-18 00:00:00'::timestamp without time zone)
WORKER_MEM:限制每个进程的使用内存。每个查询:work_mem*processes*joins-->会导致内存使用很大
max_parallel_workers_per_gather:执行器使用多少进程并发执行该节点
max_worker_processes:根据服务器上CPU核数调整进程数
max_parallel_workers:和并发进程数一样
从9.6并行查询执行开始,可以显著提高扫描许多行或索引记录的复杂查询的性能。不要忘记在高oltp工作负载的服务器上禁止并行执行。顺序扫描或索引扫描仍然耗费大量资源。如果您没有针对整个数据集运行报表,那么只需添加缺失的索引或使用适当的分区就可以提高查询性能。
https://www.percona.com/blog/parallel-queries-in-postgresql/