• [​DuckDB] 多核算子并行的源码解析


    DuckDB 是近年来颇受关注的OLAP数据库,号称是OLAP领域的SQLite,以精巧简单,性能优异而著称。笔者前段时间在调研Doris的Pipeline的算子并行方案,而DuckDB基于论文《Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age》实现SQL算子的高效并行化的Pipeline执行引擎,所以笔者花了一些时间进行了学习和总结,这里结合了Mark Raasveldt进行的分享和原始代码来一一剖析DuckDB在执行算子并行上的具体实现。

    1. 基础知识

    问题1:并行task的数目由什么决定 ?

    image.png

    Pipeline的核心是:Morsel-Driven,数据是拆分成了小部分的数据。所以并行Task的核心是:能够利用多线程来处理数据,每一个数据拆分为小部分,所以拆分并行的数目由Source决定。

    DuckDB在GlobalSource上实现了一个虚函数MaxThread来决定task数目:

    image.png

    每一个算子的GlobalSource抽象了自己的并行度:

    image.png

    问题2:并行task的怎么样进行多线程同步:

    • 多线程的竞争只会发生在SinkOperator上,也就是Pipeline的尾端
    • parallelism-aware的算法需要实现在Sink端
    • 其他的非Sink operators (比如:Hash Join Probe, Projection, Filter等), 不需要感知多线程同步的问题

    image.png

    问题3:DuckDB的是如何抽象接口的:

    Sink的Opeartor 定义了两种类型:GlobalState, LocalState

    1. GlobalState: 每个查询的Operator全局只有一个GlobalSinkState,记录全局部分的信息
    class PhysicalOperator {
    public:
    	unique_ptr sink_state;
    
    1. LocalState: 每个查询的PipelineExecutor都有一个LocalSinkState,都是局部私有
    //! The Pipeline class represents an execution pipeline
    class PipelineExecutor {
    private:
    	//! The local sink state (if any)
    	unique_ptr local_sink_state;
    

    后续会详细解析不同的sink之间的LocalState和GlobalState如何配合的,核心部分如下:

    image.png

    Sink :处理LocalState的数据

    Combine:合并LocalState到GlobalState之中

    2. 核心算子的并行

    这部分进行各个算子的源码剖析,笔者在源码的关键部分加上了中文注释,以方便大家的理解

    Sort算子

    • Sink接口:这里需要注意的是DuckDB排序是进行了列转行的工作的,后续读取时需要行转列。Sink这部分相当于实现了部分数据的排序工作。
    SinkResultType PhysicalOrder::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                       DataChunk &input) const {
    	auto &lstate = (OrderLocalSinkState &)lstate_p;
            
          // keys 是排序的列block,payload是输出的排序后数据,这里调用LocalState的SinkChunk,进行数据的转行,
    	local_sort_state.SinkChunk(keys, payload);
    
    	// 数据达到内存阈值的时候进行基数排序处理,排序之后的结果存入LocalState的本地的SortedBlock中
    	if (local_sort_state.SizeInBytes() >= gstate.memory_per_thread) {
    		local_sort_state.Sort(global_sort_state, true);
    	}
    	return SinkResultType::NEED_MORE_INPUT;
    }
    
    • Combine接口: 加锁,拷贝sorted block到Global State
    void PhysicalOrder::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
    	auto &gstate = (OrderGlobalSinkState &)gstate_p;
    	auto &lstate = (OrderLocalSinkState &)lstate_p;
            // 排序剩余内存中不满的数据
    	local_sort_state.Sort(*this, external || !local_sort_state.sorted_blocks.empty());
    
    	// Append local state sorted data to this global state
    	lock_guard append_guard(lock);
    	for (auto &sb : local_sort_state.sorted_blocks) {
    		sorted_blocks.push_back(move(sb));
    	}
    }
    
    • MergeTask:启动核数相同的task来进行Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 这里是通过Event的机制实现的
    void Schedule() override {
    		auto &context = pipeline->GetClientContext();
    		idx_t num_threads = ts.NumberOfThreads();
    
    		vector> merge_tasks;
    		for (idx_t tnum = 0; tnum < num_threads; tnum++) {
    			merge_tasks.push_back(make_unique(shared_from_this(), context, gstate));
    		}
    		SetTasks(move(merge_tasks));
    	}
    
    class PhysicalOrderMergeTask : public ExecutorTask {
    public:
    	TaskExecutionResult ExecuteTask(TaskExecutionMode mode) override {
    		// Initialize merge sorted and iterate until done
    		auto &global_sort_state = state.global_sort_state;
    		MergeSorter merge_sorter(global_sort_state, BufferManager::GetBufferManager(context));
    		
            // 加锁,获取两路,不断进行两路归并,最终完成全局排序。
    	while (true) {
    		{
    			lock_guard pair_guard(state.lock);
    			if (state.pair_idx == state.num_pairs) {
    				break;
    			}
    			GetNextPartition();
    		}
    		MergePartition();
    	}
    		event->FinishTask();
    		return TaskExecutionResult::TASK_FINISHED;
    	}
    

    聚合算子(这里分析的是Prefetch Agg Operator算子)

    • Sink接口:和Sort算子一样,这里拆分为Group ChunkAggregate Input Chunk,可以理解为代表聚合时的key与value列。注意此时Sink接口上的聚合是在LocalSinkState上完成的。
    SinkResultType PhysicalPerfectHashAggregate::Sink(ExecutionContext &context, GlobalSinkState &state,
                                                      LocalSinkState &lstate_p, DataChunk &input) const {
    	lstate.ht->AddChunk(group_chunk, aggregate_input_chunk);
    }
    
    
    void PerfectAggregateHashTable::AddChunk(DataChunk &groups, DataChunk &payload) {
    	auto address_data = FlatVector::GetData<uintptr_t>(addresses);
    	memset(address_data, 0, groups.size() * sizeof(uintptr_t));
    	D_ASSERT(groups.ColumnCount() == group_minima.size());
    
    	// 计算group key列对应的entry的位置
    	idx_t current_shift = total_required_bits;
    	for (idx_t i = 0; i < groups.ColumnCount(); i++) {
    		current_shift -= required_bits[i];
    		ComputeGroupLocation(groups.data[i], group_minima[i], address_data, current_shift, groups.size());
    	}
    
    	// 通过data加上面的entry位置 + tuple的偏移量,计算出对应的内存地址,并进行init
    	idx_t needs_init = 0;
    	for (idx_t i = 0; i < groups.size(); i++) {
    		D_ASSERT(address_data[i] < total_groups);
    		const auto group = address_data[i];
    		address_data[i] = uintptr_t(data) + address_data[i] * tuple_size;
    	}
    	RowOperations::InitializeStates(layout, addresses, sel, needs_init);
    
    	// after finding the group location we update the aggregates
    	idx_t payload_idx = 0;
    	auto &aggregates = layout.GetAggregates();
    	for (idx_t aggr_idx = 0; aggr_idx < aggregates.size(); aggr_idx++) {
    		auto &aggregate = aggregates[aggr_idx];
    		auto input_count = (idx_t)aggregate.child_count;
                    // 进行聚合的Update操作
    		RowOperations::UpdateStates(aggregate, addresses, payload, payload_idx, payload.size());
    	}
    }
    
    • Combine接口: 加锁,merge local hash tableglobal hash table
    void PhysicalPerfectHashAggregate::Combine(ExecutionContext &context, GlobalSinkState &gstate_p,
                                               LocalSinkState &lstate_p) const {
    	auto &lstate = (PerfectHashAggregateLocalState &)lstate_p;
    	auto &gstate = (PerfectHashAggregateGlobalState &)gstate_p;
    
    	lock_guard l(gstate.lock);
    	gstate.ht->Combine(*lstate.ht);
    }
    
            // local state的地址vector
    	Vector source_addresses(LogicalType::POINTER);
           // global state的地址vector
    	Vector target_addresses(LogicalType::POINTER);
    	auto source_addresses_ptr = FlatVector::GetData<data_ptr_t>(source_addresses);
    	auto target_addresses_ptr = FlatVector::GetData<data_ptr_t>(target_addresses);
    
    	// 遍历所有hash table的表,然后进行合并对应能够合并的key
    	data_ptr_t source_ptr = other.data;
    	data_ptr_t target_ptr = data;
    	idx_t combine_count = 0;
    	idx_t reinit_count = 0;
    	const auto &reinit_sel = *FlatVector::IncrementalSelectionVector();
    	for (idx_t i = 0; i < total_groups; i++) {
    		auto has_entry_source = other.group_is_set[i];
    		// we only have any work to do if the source has an entry for this group
    		if (has_entry_source) {
    			auto has_entry_target = group_is_set[i];
    			if (has_entry_target) {
    				// both source and target have an entry: need to combine
    				source_addresses_ptr[combine_count] = source_ptr;
    				target_addresses_ptr[combine_count] = target_ptr;
    				combine_count++;
    				if (combine_count == STANDARD_VECTOR_SIZE) {
    					RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);
    					combine_count = 0;
    				}
    			} else {
    				group_is_set[i] = true;
    				// only source has an entry for this group: we can just memcpy it over
    				memcpy(target_ptr, source_ptr, tuple_size);
    				// we clear this entry in the other HT as we "consume" the entry here
    				other.group_is_set[i] = false;
    			}
    		}
    		source_ptr += tuple_size;
    		target_ptr += tuple_size;
    	}
    
            // 做对应的merge操作
    	RowOperations::CombineStates(layout, source_addresses, target_addresses, combine_count);
    

    Join算子

    • Sink接口:和Sort算子一样,注意此时Sink接口上的hash 表是在LocalSinkState上完成的。
    SinkResultType PhysicalHashJoin::Sink(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p,
                                          DataChunk &input) const {
    	auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
    	auto &lstate = (HashJoinLocalSinkState &)lstate_p;
    
    	lstate.join_keys.Reset();
    	lstate.build_executor.Execute(input, lstate.join_keys);
    	// build the HT
    	auto &ht = *lstate.hash_table;
    	if (!right_projection_map.empty()) {
    		// there is a projection map: fill the build chunk with the projected columns
    		lstate.build_chunk.Reset();
    		lstate.build_chunk.SetCardinality(input);
    		for (idx_t i = 0; i < right_projection_map.size(); i++) {
    			lstate.build_chunk.data[i].Reference(input.data[right_projection_map[i]]);
    		}
                    // 构建local state的hash 表
    		ht.Build(lstate.join_keys, lstate.build_chunk)
    
    	return SinkResultType::NEED_MORE_INPUT;
    }
    
    • Combine接口: 加锁,拷贝local state的hash表到global state
    void PhysicalHashJoin::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const {
    	auto &gstate = (HashJoinGlobalSinkState &)gstate_p;
    	auto &lstate = (HashJoinLocalSinkState &)lstate_p;
    	if (lstate.hash_table) {
    		lock_guard local_ht_lock(gstate.lock);
    		gstate.local_hash_tables.push_back(move(lstate.hash_table));
    	}
    }
    
    • MergeTask:启动核数相同的task来进行Hash table的Merge (这里可以看出DuckDB对于多线程的使用是很激进的), 每个任务merge一部分Block(DuckDB之中的行数据,落盘使用)
    void Schedule() override {
    		auto &context = pipeline->GetClientContext();
    
    		vector> finalize_tasks;
    		auto &ht = *sink.hash_table;
    		const auto &block_collection = ht.GetBlockCollection();
    		const auto &blocks = block_collection.blocks;
    		const auto num_blocks = blocks.size();
    		if (block_collection.count < PARALLEL_CONSTRUCT_THRESHOLD && !context.config.verify_parallelism) {
    			// Single-threaded finalize
    			finalize_tasks.push_back(
    			    make_unique(shared_from_this(), context, sink, 0, num_blocks, false));
    		} else {
    			// Parallel finalize
    			idx_t num_threads = TaskScheduler::GetScheduler(context).NumberOfThreads();
    			auto blocks_per_thread = MaxValue<idx_t>((num_blocks + num_threads - 1) / num_threads, 1);
    
    			idx_t block_idx = 0;
    			for (idx_t thread_idx = 0; thread_idx < num_threads; thread_idx++) {
    				auto block_idx_start = block_idx;
    				auto block_idx_end = MinValue<idx_t>(block_idx_start + blocks_per_thread, num_blocks);
    				finalize_tasks.push_back(make_unique(shared_from_this(), context, sink,
    				                                                           block_idx_start, block_idx_end, true));
    				block_idx = block_idx_end;
    				if (block_idx == num_blocks) {
    					break;
    				}
    			}
    		}
    		SetTasks(move(finalize_tasks));
    	}
    
    template <bool PARALLEL>
    static inline void InsertHashesLoop(atomic<data_ptr_t> pointers[], const hash_t indices[], const idx_t count,
                                        const data_ptr_t key_locations[], const idx_t pointer_offset) {
    	for (idx_t i = 0; i < count; i++) {
    		auto index = indices[i];
    		if (PARALLEL) {
    			data_ptr_t head;
    			do {
    				head = pointers[index];
    				Store<data_ptr_t>(head, key_locations[i] + pointer_offset);
    			} while (!std::atomic_compare_exchange_weak(&pointers[index], &head, key_locations[i]));
    		} else {
    			// set prev in current key to the value (NOTE: this will be nullptr if there is none)
    			Store<data_ptr_t>(pointers[index], key_locations[i] + pointer_offset);
    
    			// set pointer to current tuple
    			pointers[index] = key_locations[i];
    		}
    	}
    }
    
    • 并行扫描hash表,进行outer数据的处理:
    void PhysicalHashJoin::GetData(ExecutionContext &context, DataChunk &chunk, GlobalSourceState &gstate_p,
                                   LocalSourceState &lstate_p) const {
    	auto &sink = (HashJoinGlobalSinkState &)*sink_state;
    	auto &gstate = (HashJoinGlobalSourceState &)gstate_p;
    	auto &lstate = (HashJoinLocalSourceState &)lstate_p;
    	sink.scanned_data = true;
    
    	if (!sink.external) {
    		if (IsRightOuterJoin(join_type)) {
    			{
    				lock_guard guard(gstate.lock);
                                    // 拆解扫描部分hash表的数据
    				lstate.ScanFullOuter(sink, gstate);
    			}
                            // 扫描hash表读取数据
    			sink.hash_table->GatherFullOuter(chunk, lstate.addresses, lstate.full_outer_found_entries);
    		}
    		return;
    	}
    }
    
    
    void HashJoinLocalSourceState::ScanFullOuter(HashJoinGlobalSinkState &sink, HashJoinGlobalSourceState &gstate) {
    	auto &fo_ss = gstate.full_outer_scan;
    	idx_t scan_index_before = fo_ss.scan_index;
    	full_outer_found_entries = sink.hash_table->ScanFullOuter(fo_ss, addresses);
    	idx_t scanned = fo_ss.scan_index - scan_index_before;
    	full_outer_in_progress = scanned;
    }
    

    小结

    • DuckDB在多线程同步,核心就是在Combine的时候:加锁,并发是通过原子变量的方式实现并发写入hash表的操作
    • 通过local/global 拆分私有内存和公共内存,并发的基础是在私有内存上进行运算,同步的部分主要在公有内存的更新

    3. Spill To Disk的实现

    DuckDB并没有如笔者预期的实现异步IO, 所以任意的执行线程是有可能Stall在系统的I/O调度上的,我想大概率是DuckDB本身的定位对于高并发场景的支持不是那么敏感所导致的。这里他们也作为了后续TODO的计划之一。

    image.png

    4. 参考资料

    DuckDB源码

    Push-Based Execution in DuckDB

  • 相关阅读:
    RK3399平台开发系列讲解(入门篇)VIM的基础命令
    在 Vue3 项目中如何关闭 ESLint
    【Spring Security 系列】(六)入门案例中各组件的实现类
    Android 全栈的进击之路
    【NSDictionary字典数组的创建 Objective-C语言】
    2023年,下班后可以做什么副业?
    让电子制造厂提高生产率的方法,学会受用终生!
    SQLMAP插件tamper模块介绍
    照着这个保姆级文档来,虚拟机装CentOS不再踩坑
    链动2+1模式系统,是如何成为人、货、场资源流动加速器?
  • 原文地址:https://www.cnblogs.com/happenlee/p/17113749.html