• Yolov5——训练目标检测模型详解(含完整源码)


    项目的克隆

    打开yolov5官网(GitHub - ultralytics/yolov5 at v5.0),下载yolov5的项目:

    环境的安装(免额外安装CUDA和cudnn)

     打开anaconda的终端,创建新的名为yolov5的环境(python选择3.8版本):

    conda create -n yolov5 python=3.8

    执行如下命令,激活这个环境:

    conda activate yolov5

     打开pytorch的官网,选择自己显卡对应的pytorch版本(我的显卡为GTX1650,这里选择1.8.0pytorch版本):

     选择CUDA版本(这里我选择10.2),复制命令到anaconda终端执行:

    至此pytorch环境安装完成,接下来验证CUDA和cudnn版本,打开Ptcharm,执行如下代码:

    复制代码
    import torch
    print(torch.cuda.is_available())
    print(torch.backends.cudnn.is_available())
    print(torch.cuda_version)
    print(torch.backends.cudnn.version())
    复制代码

    输出如下结果表示安装成功:

    利用labelimg标注数据集:

    labelimg的安装:

    打开cmd命令控制台,输入如下的命令下载labelimg相关的依赖:

    pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

    数据准备:

    新建一个名为VOC2007的文件夹,在里面创建一个名为JPEGImages的文件夹存放需要打标签的图片文件;再创建一个名为Annotations的文件夹存放标注的标签文件;最后创建一个名为 predefined_classes.txt 的txt文件来存放所要标注的类别名称:

     进入到刚刚创建的VOC2007路径,执行cmd命令:

     输入如下的命令打开labelimg并初始化predefined_classes.txt里面定义的类:

    labelimg JPEGImages predefined_classes.txt

     打开view设置,勾选如下选项(建议勾选):

     标注数据:

    按下快捷键W调出标注十字架,选择需要标注的对象区域,并定义自己要标注的类别。

    打完标签后的图片会在Annotations 文件夹下生成对应的xml文件:

    数据集格式转化及训练集和验证集划分

    利用pycharm打开从yolov5官网下载的yolov5项目,在该项目目录下创建名为VOCdevkit的文件夹,并将刚才的VOC2007文件夹放入:

     

     在VOCdevkit的同级目录下创建新的python文件,执行如下代码:

    (注:classes里面必须正确填写xml里面已经标注好的类这里为classes = ["fanbingbing", "jiangwen", "liangjiahui", "liuyifei", "zhangziyi", "zhoujielun"])

    复制代码
    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    import random
    from shutil import copyfile
    
    classes = ["fanbingbing", "jiangwen", "liangjiahui", "liuyifei", "zhangziyi", "zhoujielun"]
    # classes=["ball"]
    
    TRAIN_RATIO = 80
    
    
    def clear_hidden_files(path):
        dir_list = os.listdir(path)
        for i in dir_list:
            abspath = os.path.join(os.path.abspath(path), i)
            if os.path.isfile(abspath):
                if i.startswith("._"):
                    os.remove(abspath)
            else:
                clear_hidden_files(abspath)
    
    
    def convert(size, box):
        dw = 1. / size[0]
        dh = 1. / size[1]
        x = (box[0] + box[1]) / 2.0
        y = (box[2] + box[3]) / 2.0
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        return (x, y, w, h)
    
    
    def convert_annotation(image_id):
        in_file = open("F:/Yolov5/yolov5_offical/yolov5-master/VOCdevkit/VOC2007/Annotations/%s.xml" % image_id)
        out_file = open('F:/Yolov5/yolov5_offical/yolov5-master/VOCdevkit/VOC2007/YOLOLabels/%s.txt' % image_id, 'w')
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
    
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
        in_file.close()
        out_file.close()
    
    
    wd = os.getcwd()
    wd = os.getcwd()
    data_base_dir = os.path.join(wd, "F:/Yolov5/yolov5_offical/yolov5-master/VOCdevkit/")
    if not os.path.isdir(data_base_dir):
        os.mkdir(data_base_dir)
    work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
    if not os.path.isdir(work_sapce_dir):
        os.mkdir(work_sapce_dir)
    annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
    if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
    clear_hidden_files(annotation_dir)
    image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
    if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
    clear_hidden_files(image_dir)
    yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
    if not os.path.isdir(yolo_labels_dir):
        os.mkdir(yolo_labels_dir)
    clear_hidden_files(yolo_labels_dir)
    yolov5_images_dir = os.path.join(data_base_dir, "images/")
    if not os.path.isdir(yolov5_images_dir):
        os.mkdir(yolov5_images_dir)
    clear_hidden_files(yolov5_images_dir)
    yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
    if not os.path.isdir(yolov5_labels_dir):
        os.mkdir(yolov5_labels_dir)
    clear_hidden_files(yolov5_labels_dir)
    yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
    if not os.path.isdir(yolov5_images_train_dir):
        os.mkdir(yolov5_images_train_dir)
    clear_hidden_files(yolov5_images_train_dir)
    yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
    if not os.path.isdir(yolov5_images_test_dir):
        os.mkdir(yolov5_images_test_dir)
    clear_hidden_files(yolov5_images_test_dir)
    yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
    if not os.path.isdir(yolov5_labels_train_dir):
        os.mkdir(yolov5_labels_train_dir)
    clear_hidden_files(yolov5_labels_train_dir)
    yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
    if not os.path.isdir(yolov5_labels_test_dir):
        os.mkdir(yolov5_labels_test_dir)
    clear_hidden_files(yolov5_labels_test_dir)
    
    train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
    test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
    train_file.close()
    test_file.close()
    train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
    test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
    list_imgs = os.listdir(image_dir)  # list image files
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    for i in range(0, len(list_imgs)):
        path = os.path.join(image_dir, list_imgs[i])
        if os.path.isfile(path):
            image_path = image_dir + list_imgs[i]
            voc_path = list_imgs[i]
            (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
            (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
            annotation_name = nameWithoutExtention + '.xml'
            annotation_path = os.path.join(annotation_dir, annotation_name)
            label_name = nameWithoutExtention + '.txt'
            label_path = os.path.join(yolo_labels_dir, label_name)
        prob = random.randint(1, 100)
        print("Probability: %d" % prob)
        if (prob < TRAIN_RATIO):  # train dataset
            if os.path.exists(annotation_path):
                train_file.write(image_path + '\n')
                convert_annotation(nameWithoutExtention)  # convert label
                copyfile(image_path, yolov5_images_train_dir + voc_path)
                copyfile(label_path, yolov5_labels_train_dir + label_name)
        else:  # test dataset
            if os.path.exists(annotation_path):
                test_file.write(image_path + '\n')
                convert_annotation(nameWithoutExtention)  # convert label
                copyfile(image_path, yolov5_images_test_dir + voc_path)
                copyfile(label_path, yolov5_labels_test_dir + label_name)
    train_file.close()
    test_file.close()
    复制代码

    代码执行完成后目录结构如下:

     下载预训练权重:

    打开这个网址下载预训练权重,这里选择yolov5s.pt。

    训练模型

    修改数据配置文件:

    找到data目录下的voc.yaml文件,将该文件复制一份,重命名为people.yaml:

     打开people.yaml,修改相关参数(train,val,nc):

     修改模型配置文件:

    找到models目录下的yolov5s.yaml文件,将该文件复制一份,重命名为yolov5s_people.yaml:

     打开yolov5_people.yaml,修改相关参数(nc):

     训练模型:

    打开train.py,修改如下参数:

    weights:权重的路径

    cfg:yolov5s_people.yaml路径

    data:people.yaml路径

    epochs:训练的轮数

    batch-size:每次输入图片数量(根据自己电脑情况修改)

    workers:最大工作核心数(根据自己电脑情况修改)
      

    运行train.py函数训练自己的模型。

    tensorbord查看参数

    打开pycharm的命令控制终端,运行如下命令:

    tensorboard --logdir=runs/train

    推理测试

    模型训练完成后,会在主目录下产生一个名为runs的文件夹,在runs/train/exp/weights目录下会产生两个权重文件,一个是最后一轮的权重文件,一个是最好的权重文件。

    打开detect.py文件,修改相关参数:

    weights:权重路径(这里选择best.pt)

    source:测试数据路径,可以是图片/视频,也可以是'0'(电脑自带摄像头)

    行detect.py进行测试,测试结果会保存在runs/detect/exp目录下:

    源码地址:https://github.com/Sakura-jie/yolov5-master.git

    (注:由于模型训练轮数以及数据集较少等原因,本项目中模型准确率较低,建议增加训练轮数以及数据集大小以获得更高准确率)

  • 相关阅读:
    ES分片均衡策略分析与改进
    基于大模型GPT,如何提炼出优质的Prompt
    纸质书籍OCR方案大揭秘,快来看看有哪些神奇的黑科技
    JavaScript系列之FileReader
    如何使用西门子存储卡清除博途S7-1200的密码
    云计算及其应用知识点总结
    如何去开展软件测试工作
    AppLink定时调度操作
    css背景图片不影响上一层透明组件的背景色
    Autojs 小游戏实践-神农百草园
  • 原文地址:https://www.cnblogs.com/zyj3955/p/17225500.html