实现:getBoundClientRect
的实现方式,监听 scroll
事件(建议给监听事件添加节流),图片加载完会从 img
标签组成的 DOM 列表中删除,最后所有的图片加载完毕后需要解绑监听事件。
// scr 加载默认图片,data-src 保存实施懒加载后的图片
//
let imgs = [...document.querySelectorAll("img")];
const len = imgs.length;
let lazyLoad = function() {
let count = 0;
let deleteImgs = [];
// 获取当前可视区的高度
let viewHeight = document.documentElement.clientHeight;
// 获取当前滚动条的位置(距离顶部的距离,等价于document.documentElement.scrollTop)
let scrollTop = window.pageYOffset;
imgs.forEach((img) => {
// 获取元素的大小,及其相对于视口的位置,如 bottom 为元素底部到网页顶部的距离
let bound = img.getBoundingClientRect();
// 当前图片距离网页顶部的距离
// let imgOffsetTop = img.offsetTop;
// 判断图片是否在可视区内,如果在就加载(两种判断方式)
// if(imgOffsetTop < scrollTop + viewHeight)
if (bound.top < viewHeight) {
img.src = img.dataset.src; // 替换待加载的图片 src
count++;
deleteImgs.push(img);
// 最后所有的图片加载完毕后需要解绑监听事件
if(count === len) {
document.removeEventListener("scroll", imgThrottle);
}
}
});
// 图片加载完会从 `img` 标签组成的 DOM 列表中删除
imgs = imgs.filter((img) => !deleteImgs.includes(img));
}
window.onload = function () {
lazyLoad();
};
// 使用 防抖/节流 优化一下滚动事件
let imgThrottle = debounce(lazyLoad, 1000);
// 监听 `scroll` 事件
window.addEventListener("scroll", imgThrottle);
浏览器会把inline内联元素间的空白字符(空格、换行、Tab等)渲染成一个空格。为了美观,通常是一个放在一行,这导致
换行后产生换行字符,它变成一个空格,占用了一个字符的宽度。
解决办法:
(1)为设置float:left。不足:有些容器是不能设置浮动,如左右切换的焦点图等。
(2)将所有写在同一行。不足:代码不美观。
(3)将
内的字符尺寸直接设为0,即font-size:0。不足:
中的其他字符尺寸也被设为0,需要额外重新设定其他字符尺寸,且在Safari浏览器依然会出现空白间隔。
(4)消除
的字符间隔letter-spacing:-8px,不足:这也设置了内的字符间隔,因此需要将
内的字符间隔设为默认letter-spacing:normal。
Promise.resolve().then(() => {
console.log('1');
throw 'Error';
}).then(() => {
console.log('2');
}).catch(() => {
console.log('3');
throw 'Error';
}).then(() => {
console.log('4');
}).catch(() => {
console.log('5');
}).then(() => {
console.log('6');
});
执行结果如下:
1
3
5
6
在这道题目中,我们需要知道,无论是thne还是catch中,只要throw 抛出了错误,就会被catch捕获,如果没有throw出错误,就被继续执行后面的then。
function Foo(){
Foo.a = function(){
console.log(1);
}
this.a = function(){
console.log(2)
}
}
Foo.prototype.a = function(){
console.log(3);
}
Foo.a = function(){
console.log(4);
}
Foo.a();
let obj = new Foo();
obj.a();
Foo.a();
输出结果:4 2 1
解析:
function unique(arr) {
var res = [];
for(var i = 0; i < arr.length; i++) {
if(res.indexOf(arr[i]) === -1) res.push(arr[i]);
// if(!res.includes(arr[i])) res.push(arr[i]);
}
return res;
}
// filter
function unique(arr) {
var res = arr.filter((value, index) => {
// 只存第一个出现的元素
return arr.indexOf(value) === index;
});
return res;
}
// forEach
function unique(arr) {
var res = [];
arr.forEach((value) => {
if(!res.includes(value)) res.push(value);
});
return res;
}
function unique(arr) {
var res = [];
for(var i = 0; i < arr.length; i++) {
var flag = false;
for(var j = 0; j < res.length; j++) {
if(arr[i] === res[j]) {
flag = true;
break;
}
}
if(flag === false) res.push(arr[i]);
}
return res;
}
function unique(arr) {
// return [...new Set(arr)];
return Array.from(new Set(arr));
}
题目描述:JS 实现一个带并发限制的异步调度器 Scheduler,保证同时运行的任务最多有两个
addTask(1000,"1");
addTask(500,"2");
addTask(300,"3");
addTask(400,"4");
的输出顺序是:2 3 1 4
整个的完整执行流程:
一开始1、2两个任务开始执行
500ms时,2任务执行完毕,输出2,任务3开始执行
800ms时,3任务执行完毕,输出3,任务4开始执行
1000ms时,1任务执行完毕,输出1,此时只剩下4任务在执行
1200ms时,4任务执行完毕,输出4
实现代码如下:
class Scheduler {
constructor(limit) {
this.queue = [];
this.maxCount = limit;
this.runCounts = 0;
}
add(time, order) {
const promiseCreator = () => {
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(order);
resolve();
}, time);
});
};
this.queue.push(promiseCreator);
}
taskStart() {
for (let i = 0; i < this.maxCount; i++) {
this.request();
}
}
request() {
if (!this.queue || !this.queue.length || this.runCounts >= this.maxCount) {
return;
}
this.runCounts++;
this.queue
.shift()()
.then(() => {
this.runCounts--;
this.request();
});
}
}
const scheduler = new Scheduler(2);
const addTask = (time, order) => {
scheduler.add(time, order);
};
addTask(1000, "1");
addTask(500, "2");
addTask(300, "3");
addTask(400, "4");
scheduler.taskStart();
参考 前端进阶面试题详细解答
var obj = {
name : 'cuggz',
fun : function(){
console.log(this.name);
}
}
obj.fun() // cuggz
new obj.fun() // undefined
使用new构造函数时,其this指向的是全局环境window。
题目描述:实现一个冒泡排序
实现代码如下:
function bubbleSort(arr) {
// 缓存数组长度
const len = arr.length;
// 外层循环用于控制从头到尾的比较+交换到底有多少轮
for (let i = 0; i < len; i++) {
// 内层循环用于完成每一轮遍历过程中的重复比较+交换
for (let j = 0; j < len - 1; j++) {
// 若相邻元素前面的数比后面的大
if (arr[j] > arr[j + 1]) {
// 交换两者
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
}
}
}
// 返回数组
return arr;
}
// console.log(bubbleSort([3, 6, 2, 4, 1]));
1)Promise基本特性
2)Promise优点
3)Promise缺点
4)简单代码实现
最简单的Promise实现有7个主要属性, state(状态), value(成功返回值), reason(错误信息), resolve方法, reject方法, then方法
class Promise{
constructor(executor) {
this.state = 'pending';
this.value = undefined;
this.reason = undefined;
let resolve = value => {
if (this.state === 'pending') {
this.state = 'fulfilled';
this.value = value;
}
};
let reject = reason => {
if (this.state === 'pending') {
this.state = 'rejected';
this.reason = reason;
}
};
try {
// 立即执行函数
executor(resolve, reject);
} catch (err) {
reject(err);
}
}
then(onFulfilled, onRejected) {
if (this.state === 'fulfilled') {
let x = onFulfilled(this.value);
};
if (this.state === 'rejected') {
let x = onRejected(this.reason);
};
}
}
5)面试够用版
function myPromise(constructor){ let self=this;
self.status="pending" //定义状态改变前的初始状态
self.value=undefined;//定义状态为resolved的时候的状态
self.reason=undefined;//定义状态为rejected的时候的状态
function resolve(value){
//两个==="pending",保证了了状态的改变是不不可逆的
if(self.status==="pending"){
self.value=value;
self.status="resolved";
}
}
function reject(reason){
//两个==="pending",保证了了状态的改变是不不可逆的
if(self.status==="pending"){
self.reason=reason;
self.status="rejected";
}
}
//捕获构造异常
try{
constructor(resolve,reject);
}catch(e){
reject(e);
}
}
myPromise.prototype.then=function(onFullfilled,onRejected){
let self=this;
switch(self.status){
case "resolved": onFullfilled(self.value); break;
case "rejected": onRejected(self.reason); break;
default:
}
}
// 测试
var p=new myPromise(function(resolve,reject){resolve(1)});
p.then(function(x){console.log(x)})
//输出1
6)大厂专供版
const PENDING = "pending";
const FULFILLED = "fulfilled";
const REJECTED = "rejected";
const resolvePromise = (promise, x, resolve, reject) => {
if (x === promise) {
// If promise and x refer to the same object, reject promise with a TypeError as the reason.
reject(new TypeError('循环引用'))
}
// if x is an object or function,
if (x !== null && typeof x === 'object' || typeof x === 'function') {
// If both resolvePromise and rejectPromise are called, or multiple calls to the same argument are made, the first call takes precedence, and any further calls are ignored.
let called
try { // If retrieving the property x.then results in a thrown exception e, reject promise with e as the reason.
let then = x.then // Let then be x.then
// If then is a function, call it with x as this
if (typeof then === 'function') {
// If/when resolvePromise is called with a value y, run [[Resolve]](promise, y)
// If/when rejectPromise is called with a reason r, reject promise with r.
then.call(x, y => {
if (called) return
called = true
resolvePromise(promise, y, resolve, reject)
}, r => {
if (called) return
called = true
reject(r)
})
} else {
// If then is not a function, fulfill promise with x.
resolve(x)
}
} catch (e) {
if (called) return
called = true
reject(e)
}
} else {
// If x is not an object or function, fulfill promise with x
resolve(x)
}
}
function Promise(excutor) {
let that = this; // 缓存当前promise实例例对象
that.status = PENDING; // 初始状态
that.value = undefined; // fulfilled状态时 返回的信息
that.reason = undefined; // rejected状态时 拒绝的原因
that.onFulfilledCallbacks = []; // 存储fulfilled状态对应的onFulfilled函数
that.onRejectedCallbacks = []; // 存储rejected状态对应的onRejected函数
function resolve(value) { // value成功态时接收的终值
if(value instanceof Promise) {
return value.then(resolve, reject);
}
// 实践中要确保 onFulfilled 和 onRejected ⽅方法异步执⾏行行,且应该在 then ⽅方法被调⽤用的那⼀一轮事件循环之后的新执⾏行行栈中执⾏行行。
setTimeout(() => {
// 调⽤用resolve 回调对应onFulfilled函数
if (that.status === PENDING) {
// 只能由pending状态 => fulfilled状态 (避免调⽤用多次resolve reject)
that.status = FULFILLED;
that.value = value;
that.onFulfilledCallbacks.forEach(cb => cb(that.value));
}
});
}
function reject(reason) { // reason失败态时接收的拒因
setTimeout(() => {
// 调⽤用reject 回调对应onRejected函数
if (that.status === PENDING) {
// 只能由pending状态 => rejected状态 (避免调⽤用多次resolve reject)
that.status = REJECTED;
that.reason = reason;
that.onRejectedCallbacks.forEach(cb => cb(that.reason));
}
});
}
// 捕获在excutor执⾏行行器器中抛出的异常
// new Promise((resolve, reject) => {
// throw new Error('error in excutor')
// })
try {
excutor(resolve, reject);
} catch (e) {
reject(e);
}
}
Promise.prototype.then = function(onFulfilled, onRejected) {
const that = this;
let newPromise;
// 处理理参数默认值 保证参数后续能够继续执⾏行行
onFulfilled = typeof onFulfilled === "function" ? onFulfilled : value => value;
onRejected = typeof onRejected === "function" ? onRejected : reason => {
throw reason;
};
if (that.status === FULFILLED) { // 成功态
return newPromise = new Promise((resolve, reject) => {
setTimeout(() => {
try{
let x = onFulfilled(that.value);
resolvePromise(newPromise, x, resolve, reject); //新的promise resolve 上⼀一个onFulfilled的返回值
} catch(e) {
reject(e); // 捕获前⾯面onFulfilled中抛出的异常then(onFulfilled, onRejected);
}
});
})
}
if (that.status === REJECTED) { // 失败态
return newPromise = new Promise((resolve, reject) => {
setTimeout(() => {
try {
let x = onRejected(that.reason);
resolvePromise(newPromise, x, resolve, reject);
} catch(e) {
reject(e);
}
});
});
}
if (that.status === PENDING) { // 等待态
// 当异步调⽤用resolve/rejected时 将onFulfilled/onRejected收集暂存到集合中
return newPromise = new Promise((resolve, reject) => {
that.onFulfilledCallbacks.push((value) => {
try {
let x = onFulfilled(value);
resolvePromise(newPromise, x, resolve, reject);
} catch(e) {
reject(e);
}
});
that.onRejectedCallbacks.push((reason) => {
try {
let x = onRejected(reason);
resolvePromise(newPromise, x, resolve, reject);
} catch(e) {
reject(e);
}
});
});
}
};
首先判断数据类型是否为对象,如果是对象(数组|对象),则递归(深/浅拷贝),否则直接拷贝。
function isObject(obj) {
return typeof obj === "object" && obj !== null;
}
这个函数只能判断 obj
是否是对象,无法判断其具体是数组还是对象。
什么是偏函数?偏函数就是将一个 n 参的函数转换成固定 x 参的函数,剩余参数(n - x)将在下次调用全部传入。举个例子:
function add(a, b, c) {
return a + b + c
}
let partialAdd = partial(add, 1)
partialAdd(2, 3)
发现没有,其实偏函数和函数柯里化有点像,所以根据函数柯里化的实现,能够能很快写出偏函数的实现:
function partial(fn, ...args) {
return (...arg) => {
return fn(...args, ...arg)
}
}
如上这个功能比较简单,现在我们希望偏函数能和柯里化一样能实现占位功能,比如:
function clg(a, b, c) {
console.log(a, b, c)
}
let partialClg = partial(clg, '_', 2)
partialClg(1, 3) // 依次打印:1, 2, 3
_
占的位其实就是 1 的位置。相当于:partial(clg, 1, 2),然后 partialClg(3)。明白了原理,我们就来写实现:
function partial(fn, ...args) {
return (...arg) => {
args[index] =
return fn(...args, ...arg)
}
}
Math.pow(2, 53) ,53 为有效数字,会发生截断,等于 JS 能支持的最大数字。
语法:
arr.forEach(callback(currentValue [, index [, array]])[, thisArg])
参数:
callback
:为数组中每个元素执行的函数,该函数接受1-3个参数currentValue
: 数组中正在处理的当前元素index
(可选): 数组中正在处理的当前元素的索引array
(可选):forEach()
方法正在操作的数组thisArg
(可选): 当执行回调函数callback
时,用作this
的值。返回值:
undefined
Array.prototype.forEach1 = function(callback, thisArg) {
if(this == null) {
throw new TypeError('this is null or not defined');
}
if(typeof callback !== "function") {
throw new TypeError(callback + 'is not a function');
}
// 创建一个新的 Object 对象。该对象将会包裹(wrapper)传入的参数 this(当前数组)。
const O = Object(this);
// O.length >>> 0 无符号右移 0 位
// 意义:为了保证转换后的值为正整数。
// 其实底层做了 2 层转换,第一是非 number 转成 number 类型,第二是将 number 转成 Uint32 类型
const len = O.length >>> 0;
let k = 0;
while(k < len) {
if(k in O) {
callback.call(thisArg, O[k], k, O);
}
k++;
}
}
语法:
arr.map(callback(currentValue [, index [, array]])[, thisArg])
参数:与
forEach()
方法一样返回值:一个由原数组每个元素执行回调函数的结果组成的新数组。
Array.prototype.map1 = function(callback, thisArg) {
if(this == null) {
throw new TypeError('this is null or not defined');
}
if(typeof callback !== "function") {
throw new TypeError(callback + 'is not a function');
}
const O = Object(this);
const len = O.length >>> 0;
let newArr = []; // 返回的新数组
let k = 0;
while(k < len) {
if(k in O) {
newArr[k] = callback.call(thisArg, O[k], k, O);
}
k++;
}
return newArr;
}
语法:
arr.filter(callback(element [, index [, array]])[, thisArg])
参数:
callback
: 用来测试数组的每个元素的函数。返回true
表示该元素通过测试,保留该元素,false
则不保留。它接受以下三个参数:element、index、array
,参数的意义与forEach
一样。
thisArg
(可选): 执行callback
时,用于this
的值。返回值:一个新的、由通过测试的元素组成的数组,如果没有任何数组元素通过测试,则返回空数组。
Array.prototype.filter1 = function(callback, thisArg) {
if(this == null) {
throw new TypeError('this is null or not defined');
}
if(typeof callback !== "function") {
throw new TypeError(callback + 'is not a function');
}
const O = Object(this);
const len = O.length >>> 0;
let newArr = []; // 返回的新数组
let k = 0;
while(k < len) {
if(k in O) {
if(callback.call(thisArg, O[k], k, O)) {
newArr.push(O[k]);
}
}
k++;
}
return newArr;
}
语法:
arr.some(callback(element [, index [, array]])[, thisArg])
参数:
callback
: 用来测试数组的每个元素的函数。接受以下三个参数:element、index、array,参数的意义与 forEach 一样。
thisArg
(可选): 执行callback
时,用于this
的值。
返回值:数组中有至少一个元素通过回调函数的测试就会返回 true;所有元素都没有通过回调函数的测试返回值才会为 false。
Array.prototype.some1 = function(callback, thisArg) {
if(this == null) {
throw new TypeError('this is null or not defined');
}
if(typeof callback !== "function") {
throw new TypeError(callback + 'is not a function');
}
const O = Object(this);
const len = O.length >>> 0;
let k = 0;
while(k < len) {
if(k in O) {
if(callback.call(thisArg, O[k], k, O)) {
return true
}
}
k++;
}
return false;
}
语法:
arr.reduce(callback(preVal, curVal[, curIndex [, array]])[, initialValue])
参数:
callback
: 一个 “reducer” 函数,包含四个参数:
preVal
:上一次调用callback
时的返回值。在第一次调用时,若指定了初始值initialValue
,其值则为initialValue
,否则为数组索引为 0 的元素array[0]
。
curVal
:数组中正在处理的元素。在第一次调用时,若指定了初始值initialValue
,其值则为数组索引为 0 的元素array[0]
,否则为array[1]
。
curIndex
(可选):数组中正在处理的元素的索引。若指定了初始值initialValue
,则起始索引号为 0,否则从索引 1 起始。
array
(可选):用于遍历的数组。
initialValue(可选): 作为第一次调用callback
函数时参数preVal
的值。若指定了初始值initialValue
,则curVal
则将使用数组第一个元素;否则preVal
将使用数组第一个元素,而curVal
将使用数组第二个元素。
返回值:使用 “reducer” 回调函数遍历整个数组后的结果。
Array.prototype.reduce1 = function(callback, initialValue) {
if(this == null) {
throw new TypeError('this is null or not defined');
}
if(typeof callback !== "function") {
throw new TypeError(callback + 'is not a function');
}
const O = Object(this);
const len = O.length >>> 0;
let k = 0;
let accumulator = initialValue;
// 如果第二个参数为undefined的情况下,则数组的第一个有效值(非empty)作为累加器的初始值
if(accumulator === undefined) {
while(k < len && !(k in O)) {
k++;
}
// 如果超出数组界限还没有找到累加器的初始值,则TypeError
if(k >= len) {
throw new TypeError('Reduce of empty array with no initial value');
}
accumulator = O[k++];
}
while(k < len) {
if(k in O) {
accumulator = callback(accumulator, O[k], k, O);
}
k++;
}
return accumulator;
}
节流(throttle
):触发高频事件,且 N 秒内只执行一次。这就好比公交车,10 分钟一趟,10 分钟内有多少人在公交站等我不管,10 分钟一到我就要发车走人!类似qq飞车的复位按钮。
核心思想:使用时间戳或标志来实现,立即执行一次,然后每 N 秒执行一次。如果N秒内触发则直接返回。
应用:节流常应用于鼠标不断点击触发、监听滚动事件。
实现:
// 版本一:标志实现
function throttle(fn, wait){
let flag = true; // 设置一个标志
return function(...args){
if(!flag) return;
flag = false;
setTimeout(() => {
fn.call(this, ...args);
flag = true;
}, wait);
}
}
// 版本二:时间戳实现
function throttle(fn, wait) {
let pre = 0;
return function(...args) {
let now = new Date();
if(now - pre < wait) return;
pre = now;
fn.call(this, ...args);
}
}
题目描述:渲染百万条结构简单的大数据时 怎么使用分片思想优化渲染
实现代码如下:
let ul = document.getElementById("container");
// 插入十万条数据
let total = 100000;
// 一次插入 20 条
let once = 20;
//总页数
let page = total / once;
//每条记录的索引
let index = 0;
//循环加载数据
function loop(curTotal, curIndex) {
if (curTotal <= 0) {
return false;
}
//每页多少条
let pageCount = Math.min(curTotal, once);
window.requestAnimationFrame(function () {
for (let i = 0; i < pageCount; i++) {
let li = document.createElement("li");
li.innerText = curIndex + i + " : " + ~~(Math.random() * total);
ul.appendChild(li);
}
loop(curTotal - pageCount, curIndex + pageCount);
});
}
loop(total, index);
扩展思考:对于大数据量的简单 dom 结构渲染可以用分片思想解决 如果是复杂的 dom 结构渲染如何处理?
这时候就需要使用虚拟列表了 大家自行百度哈 虚拟列表和虚拟表格在日常项目使用还是很频繁的
题目描述:手写 call apply bind 实现
实现代码如下:
Function.prototype.myCall = function (context, ...args) {
if (!context || context === null) {
context = window;
}
// 创造唯一的key值 作为我们构造的context内部方法名
let fn = Symbol();
context[fn] = this; //this指向调用call的函数
// 执行函数并返回结果 相当于把自身作为传入的context的方法进行调用了
return context[fn](...args);
};
// apply原理一致 只是第二个参数是传入的数组
Function.prototype.myApply = function (context, args) {
if (!context || context === null) {
context = window;
}
// 创造唯一的key值 作为我们构造的context内部方法名
let fn = Symbol();
context[fn] = this;
// 执行函数并返回结果
return context[fn](...args);
};
//bind实现要复杂一点 因为他考虑的情况比较多 还要涉及到参数合并(类似函数柯里化)
Function.prototype.myBind = function (context, ...args) {
if (!context || context === null) {
context = window;
}
// 创造唯一的key值 作为我们构造的context内部方法名
let fn = Symbol();
context[fn] = this;
let _this = this;
// bind情况要复杂一点
const result = function (...innerArgs) {
// 第一种情况 :若是将 bind 绑定之后的函数当作构造函数,通过 new 操作符使用,则不绑定传入的 this,而是将 this 指向实例化出来的对象
// 此时由于new操作符作用 this指向result实例对象 而result又继承自传入的_this 根据原型链知识可得出以下结论
// this.__proto__ === result.prototype //this instanceof result =>true
// this.__proto__.__proto__ === result.prototype.__proto__ === _this.prototype; //this instanceof _this =>true
if (this instanceof _this === true) {
// 此时this指向指向result的实例 这时候不需要改变this指向
this[fn] = _this;
this[fn](...[...args, ...innerArgs]); //这里使用es6的方法让bind支持参数合并
} else {
// 如果只是作为普通函数调用 那就很简单了 直接改变this指向为传入的context
context[fn](...[...args, ...innerArgs]);
}
};
// 如果绑定的是构造函数 那么需要继承构造函数原型属性和方法
// 实现继承的方式: 使用Object.create
result.prototype = Object.create(this.prototype);
return result;
};
//用法如下
// function Person(name, age) {
// console.log(name); //'我是参数传进来的name'
// console.log(age); //'我是参数传进来的age'
// console.log(this); //构造函数this指向实例对象
// }
// // 构造函数原型的方法
// Person.prototype.say = function() {
// console.log(123);
// }
// let obj = {
// objName: '我是obj传进来的name',
// objAge: '我是obj传进来的age'
// }
// // 普通函数
// function normalFun(name, age) {
// console.log(name); //'我是参数传进来的name'
// console.log(age); //'我是参数传进来的age'
// console.log(this); //普通函数this指向绑定bind的第一个参数 也就是例子中的obj
// console.log(this.objName); //'我是obj传进来的name'
// console.log(this.objAge); //'我是obj传进来的age'
// }
// 先测试作为构造函数调用
// let bindFun = Person.myBind(obj, '我是参数传进来的name')
// let a = new bindFun('我是参数传进来的age')
// a.say() //123
// 再测试作为普通函数调用
// let bindFun = normalFun.myBind(obj, '我是参数传进来的name')
// bindFun('我是参数传进来的age')
事件循环机制从整体上告诉了我们 JavaScript 代码的执行顺序 Event Loop
即事件循环,是指浏览器或Node
的一种解决javaScript
单线程运行时不会阻塞的一种机制,也就是我们经常使用异步的原理。
先执行 Script 脚本,然后清空微任务队列,然后开始下一轮事件循环,继续先执行宏任务,再清空微任务队列,如此往复。
上诉的 setTimeout 和 setInterval 等都是任务源,真正进入任务队列的是他们分发的任务。
优先级
for (const macroTask of macroTaskQueue) {
handleMacroTask();
for (const microTask of microTaskQueue) {
handleMicroTask(microTask);
}
}
描述:实现一个发布订阅模式,拥有 on, emit, once, off
方法
class EventEmitter {
constructor() {
// 包含所有监听器函数的容器对象
// 内部结构: {msg1: [listener1, listener2], msg2: [listener3]}
this.cache = {};
}
// 实现订阅
on(name, callback) {
if(this.cache[name]) {
this.cache[name].push(callback);
}
else {
this.cache[name] = [callback];
}
}
// 删除订阅
off(name, callback) {
if(this.cache[name]) {
this.cache[name] = this.cache[name].filter(item => item !== callback);
}
if(this.cache[name].length === 0) delete this.cache[name];
}
// 只执行一次订阅事件
once(name, callback) {
callback();
this.off(name, callback);
}
// 触发事件
emit(name, ...data) {
if(this.cache[name]) {
// 创建副本,如果回调函数内继续注册相同事件,会造成死循环
let tasks = this.cache[name].slice();
for(let fn of tasks) {
fn(...data);
}
}
}
}
是类数组,是属于鸭子类型的范畴,长得像数组,