• ResNet18实现——MNIST手写数字识别(突破0.995)


    1.简单CNN改进

    简单的CNN实现——MNIST手写数字识别
    该部分首先对我前面的工作进行了改进,然后以此为基础构建ResNet18去实现MNIST手写数字识别。

    1.改进要点:

    1.利用nn.Sequential()自定义块结构,增加可读性和方便修改、复用。
    2.增加 nn.BatchNorm2d() 加快收敛。
    3.改用nn.Flatten()进行特征图展平。
    4.设置nn.ReLU()的参数inplace = True,效率更好
    改进代码如下:

    import torch
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    # Super parameter
    batch_size = 64
    lr = 0.01
    momentum = 0.5
    epoch = 10
    # Prepare dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    # Design model
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.block1 = nn.Sequential(
                nn.Conv2d(1, 10, 5),
                nn.MaxPool2d(2),
                nn.ReLU(True),
                nn.BatchNorm2d(10),
            )
            self.block2 = nn.Sequential(
                nn.Conv2d(10, 20, 5),
                nn.MaxPool2d(2),
                nn.ReLU(True),
                nn.BatchNorm2d(20),
            )
            self.fc = nn.Sequential(
                nn.Flatten(),
                nn.Linear(320, 10)
            )
        def forward(self, x):
            x = self.block1(x)
            x = self.block2(x)
            x = self.fc(x)
            return x
    model = Net()
    # Construct loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
    # Train and Test
    def train():
        for (images, target) in train_loader:
            outputs = model(images)
            loss = criterion(outputs, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    def test():
        correct, total = 0, 0
        with torch.no_grad():
            for (images, target) in test_loader:
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += target.size(0)
                correct += (predicted == target).sum().item()
        print('[%d / %d]: %.2f %% ' % (i + 1, epoch, 100 * correct / total))
    # Start train and Test
    print('Accuracy on test set:')
    for i in range(epoch):
        train()
        test()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66

    改进后在测试集上的识别准确率:

    Accuracy on test set:
    [1 / 10]: 97.74 % 
    [2 / 10]: 98.34 % 
    [3 / 10]: 98.60 % 
    [4 / 10]: 98.71 % 
    [5 / 10]: 98.98 % 
    [6 / 10]: 98.96 % 
    [7 / 10]: 98.95 % 
    [8 / 10]: 99.06 % 
    [9 / 10]: 99.06 % 
    [10 / 10]: 99.11 % 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    结论:改进后相比于改进前收敛速度更快,且准确率得到了普遍提高。

    2.利用云GPU平台,我们获得了了一个GPU,对前面的CPU版本进行改进,加快训练速度:

    1.申明使用GPUdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    2.把model放到GPU上model.to(device)
    3.把数据和标签放到GPU上mages, target = images.to(device), target.to(device)
    4.增大batch_size ,同时学习率也按相同倍数增加
    5.DataLoader中设置参数num_workers=4,pin_memory=True

    import torch
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Super parameter
    batch_size = 256
    lr = 0.04
    momentum = 0.5
    epoch = 20
    # Prepare dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,num_workers=4,pin_memory=True)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,num_workers=4,pin_memory=True)
    # Design model
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.block1 = nn.Sequential(
                nn.Conv2d(1, 10, 5),
                nn.MaxPool2d(2),
                nn.ReLU(True),
                nn.BatchNorm2d(10),
            )
            self.block2 = nn.Sequential(
                nn.Conv2d(10, 20, 5),
                nn.MaxPool2d(2),
                nn.ReLU(True),
                nn.BatchNorm2d(20),
            )
            self.fc = nn.Sequential(
                nn.Flatten(),
                nn.Linear(320, 10)
            )
        def forward(self, x):
            x = self.block1(x)
            x = self.block2(x)
            x = self.fc(x)
            return x
    model = Net()
    model.to(device)
    # Construct loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
    # Train and Test
    def train():
        for images, target in train_loader:
            images, target = images.to(device), target.to(device)
            outputs = model(images)
            loss = criterion(outputs, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    def test():
        correct, total = 0, 0
        with torch.no_grad():
            for images, target in test_loader:
                images, target = images.to(device), target.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += target.size(0)
                correct += (predicted == target).sum().item()
        print('[%d / %d]: %.2f %% ' % (i + 1, epoch, 100 * correct / total))
    # Start train and Test
    print('Accuracy on test set:')
    for i in range(epoch):
        train()
        test()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70

    结果如下:

    Accuracy on test set:
    [1 / 20]: 97.79 % 
    [2 / 20]: 98.50 % 
    [3 / 20]: 98.74 % 
    [4 / 20]: 98.60 % 
    [5 / 20]: 98.89 % 
    [6 / 20]: 98.81 % 
    [7 / 20]: 98.96 % 
    [8 / 20]: 98.96 % 
    [9 / 20]: 99.05 % 
    [10 / 20]: 98.98 % 
    [11 / 20]: 99.06 % 
    [12 / 20]: 98.92 % 
    [13 / 20]: 99.00 % 
    [14 / 20]: 99.07 % 
    [15 / 20]: 98.99 % 
    [16 / 20]: 98.95 % 
    [17 / 20]: 99.05 % 
    [18 / 20]: 99.05 % 
    [19 / 20]: 99.04 % 
    [20 / 20]: 99.01 % 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    结论:使用GPU训练相比于使用CPU,在正确的参数设置下,训练速度有了成倍的提升。

    3 .可视化改进

    1.利用tensorboard 进行训练过程的可视化。
    2.增加一个计时器,记录训练和测试整个过程的时耗,求出平均时间

    import torch
    import time
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    from torch.utils.tensorboard import SummaryWriter
    from math import ceil
    writer = SummaryWriter("tf-logs")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Super parameter
    batch_size = 512
    lr = 0.04
    momentum = 0.5
    total_epoch = 20
    # Prepare dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,num_workers=4)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,num_workers=4)
    # Design model
    class Net(nn.Module):
        def __init__(self,num_classes=10):
            super(Net, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(1, 10, 5),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.BatchNorm2d(10),
            )
            self.layer2 = nn.Sequential(
                nn.Conv2d(10, 20, 5),
                nn.MaxPool2d(2),
                nn.ReLU(),
                nn.BatchNorm2d(20),
            )
            self.fc = nn.Sequential(
                nn.Flatten(),
                nn.Linear(320, num_classes)
            )
        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = self.fc(out)
            return out
    model = Net().to(device)
    # Construct loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
    # Train and Test
    def train(epoch):
        for i ,(images, labels) in enumerate(train_loader):
            correct, total = 0, 0
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Visualization of training
            _, predicted = torch.max(outputs.data, dim=1)
            total = labels.size(0)
            correct = (predicted == labels).sum().item()
            batch_num = ceil(len(train_dataset)/batch_size)*epoch+i
            writer.add_scalar("acc_train/batch_num", 100 *correct / total,batch_num)
    def test():
        model.eval()
        correct, total = 0, 0
        with torch.no_grad():
            for i ,(images, labels) in enumerate(test_loader):
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('[%d]: %.2f %%' % (epoch + 1, 100 * correct / total))
    # Start train and Test
    print('Accuracy on test set(epoch=%d):' % (total_epoch))
    start=time.time()
    for epoch in range(total_epoch):
        train(epoch)
        test()
    end = time.time()
    print('Average time per epoch:%.2f s'%((end-start)/total_epoch))
    writer.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85

    结果:

    Accuracy on test set(epoch=20):
    [1]: 97.29 %
    [2]: 97.88 %
    [3]: 98.44 %
    [4]: 98.46 %
    [5]: 98.55 %
    [6]: 98.81 %
    [7]: 98.75 %
    [8]: 98.69 %
    [9]: 98.61 %
    [10]: 98.95 %
    [11]: 99.03 %
    [12]: 98.84 %
    [13]: 98.86 %
    [14]: 98.95 %
    [15]: 98.20 %
    [16]: 98.91 %
    [17]: 98.90 %
    [18]: 98.96 %
    [19]: 99.01 %
    [20]: 99.00 %
    Average time per epoch:5.77 s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    4.突破0.995

    1.数据增强
    2.dropout
    3.加深网络
    4.动态学习率
    5.权重初始化

    import torch
    import time
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    from torch.utils.tensorboard import SummaryWriter
    from math import ceil
    from torch.optim import lr_scheduler
    writer = SummaryWriter("tf-logs")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Super parameter
    batch_size = 512
    lr = 0.001
    momentum = 0.5
    total_epoch = 100
    # Prepare dataset
    transform = transforms.Compose([transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
                                    transforms.RandomRotation((-10, 10)),
                                    transforms.ToTensor(),
                                    transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4,pin_memory=True)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4,pin_memory=True)
    def weight_init(m):
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    # Design model
    class Net(nn.Module):
        def __init__(self, num_classes=10):
            super(Net, self).__init__()
            self.layer1 = nn.Sequential(
                nn.Conv2d(1, 32, 5),
                nn.ReLU(),
                nn.BatchNorm2d(32),
    
                nn.Conv2d(32,32,5),
                nn.ReLU(),
                nn.BatchNorm2d(32),
    
                nn.MaxPool2d(2,2),
                nn.Dropout(0.25)
            )
            self.layer2 = nn.Sequential(
                nn.Conv2d(32, 64, 3),
                nn.ReLU(),
                nn.BatchNorm2d(64),
    
                nn.Conv2d(64, 64, 3),
                nn.ReLU(),
                nn.BatchNorm2d(64),
    
                nn.MaxPool2d(2,2),
                nn.Dropout(0.25)
            )
            self.fc = nn.Sequential(
                nn.Flatten(),
                nn.Linear(64*3*3, 256),
                nn.ReLU(),
                nn.Dropout(0.5),
                nn.Linear(256,num_classes)
            )
    
        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = self.fc(out)
            return out
    
    
    model = Net().to(device)
    model.apply(weight_init)
    # Construct loss and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.RMSprop(model.parameters(),lr=lr,alpha=0.99,momentum = momentum)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3, verbose=True, threshold=0.00005, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
    
    # Train and Test
    def train(epoch):
        for i, (images, labels) in enumerate(train_loader):
            correct, total = 0, 0
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Visualization of training
            _, predicted = torch.max(outputs.data, dim=1)
            total = labels.size(0)
            correct = (predicted == labels).sum().item()
            batch_num = ceil(len(train_dataset) / batch_size) * epoch + i
            writer.add_scalar("acc_train/batch_num", 100 * correct / total, batch_num)
    
    def test():
        model.eval()
        correct, total = 0, 0
        with torch.no_grad():
            for i, (images, labels) in enumerate(test_loader):
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('[%d]: %.2f %%' % (epoch + 1, 100 * correct / total))
    
    # Start train and Test
    print('Accuracy on test set(epoch=%d):' % (total_epoch))
    start = time.time()
    for epoch in range(total_epoch):
        train(epoch)
        test()
    end = time.time()
    print('Average time per epoch:%.2f s' % ((end - start) / total_epoch))
    writer.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    Accuracy on test set(epoch=100):
    ...
    [80]: 99.34 %
    [81]: 99.26 %
    [82]: 99.24 %
    [83]: 99.26 %
    [84]: 99.31 %
    [85]: 99.51 %
    [86]: 99.37 %
    [87]: 99.30 %
    [88]: 99.35 %
    [89]: 99.29 %
    [90]: 99.29 %
    [91]: 99.35 %
    [92]: 99.40 %
    [93]: 99.20 %
    [94]: 99.42 %
    [95]: 99.37 %
    [96]: 99.31 %
    [97]: 99.31 %
    [98]: 99.41 %
    [99]: 99.34 %
    [100]: 99.30 %
    Average time per epoch:6.89 s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    结论:可以看到我们在第85轮训练中达到了0.9951的测试集准确度!

    2.模型设计与实现

    在这里插入图片描述
    在这里插入图片描述
    按照模型结构设计如下代码实现ResNet18:

    import time
    import torch
    import torch.nn as nn
    import torchvision.models as models
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    from torch.utils.tensorboard import SummaryWriter
    from math import ceil
    
    writer = SummaryWriter("tf-logs")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Super parameter
    batch_size = 512
    lr = 0.04
    momentum = 0.5
    total_epoch = 20
    # Prepare dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    
    
    def conv3x3(in_channels, out_channels, stride=1):
        return nn.Conv2d(in_channels, out_channels, kernel_size=3,
                         stride=stride, padding=1, bias=True)
    
    
    class ResidualBlock(nn.Module):
        def __init__(self, in_channels, out_channels, stride=1, downsample=None):
            super(ResidualBlock, self).__init__()
            self.conv1 = conv3x3(in_channels, out_channels, stride)
            self.bn1 = nn.BatchNorm2d(out_channels)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(out_channels, out_channels)
            self.bn2 = nn.BatchNorm2d(out_channels)
            self.downsample = downsample
    
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            if self.downsample:
                residual = self.downsample(x)
            out += residual
            out = self.relu(out)
            return out
    
    
    class ResNet(nn.Module):
        def __init__(self, block, layers, num_classes=10):
            super(ResNet, self).__init__()
            self.in_channels = 16
            self.conv = conv3x3(1, 16)
            self.bn = nn.BatchNorm2d(16)
            self.relu = nn.ReLU(inplace=True)
            self.layer1 = self.make_layer(block, 16, layers[0], stride=1)
            self.layer2 = self.make_layer(block, 32, layers[1], 2)
            self.layer3 = self.make_layer(block, 64, layers[2], 2)
            self.avg_pool = nn.AvgPool2d(8)
            self.fc1 = nn.Linear(3136, 128)
            self.normfc12 = nn.LayerNorm((128), eps=1e-5)
            self.fc2 = nn.Linear(128, num_classes)
    
        def make_layer(self, block, out_channels, blocks, stride=1):
            downsample = None
            if (stride != 1) or (self.in_channels != out_channels):
                downsample = nn.Sequential(
                    conv3x3(self.in_channels, out_channels, stride=stride),
                    nn.BatchNorm2d(out_channels))
            layers = []
            layers.append(block(self.in_channels, out_channels, stride, downsample))
            self.in_channels = out_channels
            for i in range(1, blocks):
                layers.append(block(out_channels, out_channels))
            return nn.Sequential(*layers)
    
        def forward(self, x):
            out = self.conv(x)
            out = self.bn(out)
            out = self.relu(out)
            out = self.layer1(out)
            out = self.layer2(out)
            out = self.layer3(out)
            out = out.view(out.size(0), -1)
            out = self.fc1(out)
            out = self.normfc12(out)
            out = self.relu(out)
            out = self.fc2(out)
            return out
    
    
    # [2,2,2]表示的是不同in_channels下的恒等映射数目
    model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
    
    
    # Train and Test
    def train(epoch):
        for i, (images, labels) in enumerate(train_loader):
            correct, total = 0, 0
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Visualization of training
            _, predicted = torch.max(outputs.data, dim=1)
            total = labels.size(0)
            correct = (predicted == labels).sum().item()
            batch_num = ceil(len(train_dataset) / batch_size) * epoch + i
            writer.add_scalar("acc_train/batch_num", 100 * correct / total, batch_num)
    
    
    def test():
        model.eval()
        correct, total = 0, 0
        with torch.no_grad():
            for i, (images, labels) in enumerate(test_loader):
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('[%d]: %.2f %%' % (epoch + 1, 100 * correct / total))
    
    
    # Start train and Test
    print('Accuracy on test set(epoch=%d):' % (total_epoch))
    start = time.time()
    for epoch in range(total_epoch):
        train(epoch)
        test()
    end = time.time()
    print('Average time per epoch:%.2f s' % ((end - start) / total_epoch))
    writer.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142

    输出结果如下:

    Accuracy on test set(epoch=20):
    [1]: 98.39 %
    [2]: 96.72 %
    [3]: 98.31 %
    [4]: 97.88 %
    [5]: 98.70 %
    [6]: 98.57 %
    [7]: 98.18 %
    [8]: 98.99 %
    [9]: 99.21 %
    [10]: 99.06 %
    [11]: 98.88 %
    [12]: 99.12 %
    [13]: 99.22 %
    [14]: 99.13 %
    [15]: 98.82 %
    [16]: 99.00 %
    [17]: 99.24 %
    [18]: 99.20 %
    [19]: 99.26 %
    [20]: 99.30 %
    Average time per epoch:14.43 s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    在这里插入图片描述

    3.torchvision实现的resnet18

    我们知道 学习过程 = 数据集 + 模型 + 训练测试,三个部分的耦合性很低,可以模块化。
    现在我们将自己实现的resnet18模型替换为torchvision实现的,要注意的点只有一个,就是这个模型接收的是三通道的图片,而我们的MNIST数据集是单通道的,所以在需要进行预处理images = images.expand(-1, 3, -1, -1),然后其他两个模块基本不需要改变。

    import time
    import torch
    import torch.nn as nn
    import torchvision.models as models
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    from torch.utils.tensorboard import SummaryWriter
    from math import ceil
    writer = SummaryWriter("tf-logs")
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # Super parameter
    batch_size = 512
    lr = 0.001
    momentum = 0.5
    total_epoch = 50
    # Prepare dataset
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
    # Construct model
    model = models.resnet18().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
    # Train and Test
    def train(epoch):
        for i, (images, labels) in enumerate(train_loader):
            correct, total = 0, 0
            images = images.expand(-1, 3, -1, -1)
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            loss = criterion(outputs, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # Visualization of training
            _, predicted = torch.max(outputs.data, dim=1)
            total = labels.size(0)
            correct = (predicted == labels).sum().item()
            batch_num = ceil(len(train_dataset) / batch_size) * epoch + i
            writer.add_scalar("acc_train/batch_num", 100 *round(correct / total,4), batch_num)
    def test():
        model.eval()
        correct, total = 0, 0
        with torch.no_grad():
            for i, (images, labels) in enumerate(test_loader):
                images, labels = images.to(device), labels.to(device)
                images = images.expand(-1, 3, -1, -1)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('[%d]: %.2f %%' % (epoch + 1, 100 * correct / total))
    # Start train and Test
    print('Accuracy on test set(epoch=%d):' % (total_epoch))
    start = time.time()
    for epoch in range(total_epoch):
        train(epoch)
        test()
    end = time.time()
    print('Average time per epoch:%.2f s' % ((end - start) / total_epoch))
    writer.close()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63

    输出结果:

    Accuracy on test set(epoch=50):
    ...
    [30]: 98.28 %
    [31]: 98.28 %
    [32]: 98.25 %
    [33]: 98.26 %
    [34]: 98.29 %
    [35]: 98.28 %
    [36]: 98.26 %
    [37]: 98.27 %
    [38]: 98.34 %
    [39]: 98.27 %
    [40]: 98.34 %
    [41]: 98.32 %
    [42]: 98.33 %
    [43]: 98.33 %
    [44]: 98.32 %
    [45]: 98.30 %
    [46]: 98.30 %
    [47]: 98.34 %
    [48]: 98.31 %
    [49]: 98.35 %
    [50]: 98.36 %
    Average time per epoch:6.75 s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    在这里插入图片描述
    替换为resnet101,锻炼一下GPU。
    在这里插入图片描述
    输出结果如下:

    Accuracy on test set(epoch=50):
    ...
    [30]: 97.49 %
    [31]: 97.52 %
    [32]: 97.48 %
    [33]: 97.47 %
    [34]: 97.48 %
    [35]: 97.50 %
    [36]: 97.49 %
    [37]: 97.50 %
    [38]: 97.50 %
    [39]: 97.52 %
    [40]: 97.49 %
    [41]: 97.49 %
    [42]: 97.51 %
    [43]: 97.49 %
    [44]: 97.51 %
    [45]: 97.51 %
    [46]: 97.51 %
    [47]: 97.50 %
    [48]: 97.50 %
    [49]: 97.50 %
    [50]: 97.50 %
    Average time per epoch:28.44 s
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    在这里插入图片描述

  • 相关阅读:
    维修派单系统好用吗?如何实现数字化后勤管理?
    ThreadLocal源码解析 2.ThreadLocalMap内核
    Vue2 为什么只能有一个根节点而vue3 可以多个
    深度学习基础之参数量(3)
    NMap 使用技巧总结(二)
    解决谷歌浏览器会http网站自动变成https的问题
    MasaFramework -- 更优雅的获取配置信息
    计算机网络:三次握手与四次挥手
    15天深度复习JavaWeb的详细笔记(二)——Maven
    [附源码]JAVA毕业设计敬老院管理系统(系统+LW)
  • 原文地址:https://blog.csdn.net/m0_46692607/article/details/128184809