<dependencies>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka_2.11artifactId>
<version>2.1.0version>
dependency>
dependencies>
创建topic命名为testtopic并指定2个分区。
./kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic testtopic --partitions 2
public class Producer {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 生产参数配置
Properties properties = new Properties();
properties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
properties.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
int i=0;
while (true) {
//生产消息
Future<RecordMetadata> future = kafkaProducer.send(new ProducerRecord<String, String>("testtopic", "key"+i, "value"+i));
//获取生产的数据信息
RecordMetadata recordMetadata = future.get();
System.out.println("time:"+recordMetadata.timestamp()+" key:"+i+" value:"+i+" partition:"+recordMetadata.partition()+" offset:"+recordMetadata.offset());
Thread.sleep(1000);
i+=1;
}
}
}
// ACK机制,默认为1 (0,1,-1)
properties.setProperty(ProducerConfig.ACKS_CONFIG, "");
// Socket发送消息缓冲区大小,默认为128K,设置为-1代表操作系统的默认值
properties.setProperty(ProducerConfig.SEND_BUFFER_CONFIG, "");
// Socket接收消息缓冲区大小,默认为32K,设置为-1代表操作系统的默认值
properties.setProperty(ProducerConfig.RECEIVE_BUFFER_CONFIG, "");
// 生产者客户端发送消息的最大值,默认1M
properties.setProperty(ProducerConfig.MAX_REQUEST_SIZE_CONFIG, "");
// 发送消息异常时重试次数,默认为0
properties.setProperty(ProducerConfig.RETRIES_CONFIG, "");
// 重试间隔时间,默认100
properties.setProperty(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, "");
// 生产消息自定义分区策略类
properties.setProperty(ProducerConfig.PARTITIONER_CLASS_CONFIG, "");
// 开启幂等 ,默认true
properties.setProperty(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, "");
更多配置信息查看ProducerConfig类
public class PartitionPolicy implements Partitioner {
private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap();
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int numPartitions = partitions.size();
if (keyBytes == null) {
int nextValue = this.nextValue(topic);
List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
if (availablePartitions.size() > 0) {
int part = Utils.toPositive(nextValue) % availablePartitions.size();
return ((PartitionInfo)availablePartitions.get(part)).partition();
} else {
return Utils.toPositive(nextValue) % numPartitions;
}
} else {
return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
}
}
private int nextValue(String topic) {
AtomicInteger counter = (AtomicInteger)this.topicCounterMap.get(topic);
if (null == counter) {
counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
AtomicInteger currentCounter = (AtomicInteger)this.topicCounterMap.putIfAbsent(topic, counter);
if (currentCounter != null) {
counter = currentCounter;
}
}
return counter.getAndIncrement();
}
@Override
public void close() {
}
@Override
public void configure(Map<String, ?> map) {
}
}
properties.setProperty(ProducerConfig.PARTITIONER_CLASS_CONFIG, PartitionPolicy.class.getName());
ProducerRecord有指定分区的构造方法,设置分区号
public ProducerRecord(String topic, Integer partition, K key, V value)
。
Future<RecordMetadata> future = kafkaProducer.send(new ProducerRecord<String, String>("testtopic", 1, "key"+i, "value"+i));
public class Consumer {
public static void main(String[] args) throws InterruptedException {
Properties properties = new Properties();
properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
//约定的编解码
properties.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "test_group");
//默认为自动提交
properties.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
//当设置为自动提交时,默认5秒自动提交
//properties.setProperty(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "5000");
//
//properties.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "5000");
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);
//订阅topic
kafkaConsumer.subscribe(Arrays.asList("testtopic"));
Set<TopicPartition> assignment = kafkaConsumer.assignment();
ConsumerRecords<String, String> records = null;
while (assignment.size() == 0) {
records = kafkaConsumer.poll(Duration.ofMillis(100));
assignment = kafkaConsumer.assignment();
}
/*//1.根据时间戳获取 offset,设置 offset
Map offsetsForTimes=new HashMap<>();
for (TopicPartition topicPartition : assignment) {
offsetsForTimes.put(topicPartition,1669972273941L);
}
Map offsetAndTimestampMap = kafkaConsumer.offsetsForTimes(offsetsForTimes);
offsetAndTimestampMap.forEach((tp,offsettime)->{
kafkaConsumer.seek(tp,offsettime.offset());
});*/
/*//2.指定从头开始消费
kafkaConsumer.seekToBeginning(assignment);*/
/*//3.指定从某offset开始消费
kafkaConsumer.seek(tp,0);*/
while (true) {
if (records.isEmpty()) {
Thread.sleep(3000);
} else {
System.out.printf("records count:" + records.count());
Iterator<ConsumerRecord<String, String>> iterator = records.iterator();
while (iterator.hasNext()) {
ConsumerRecord<String, String> record = iterator.next();
System.out.println(" time:" + record.timestamp() + " key:" + record.key() + " value:" + record.value() + " partition:" + record.partition() + " offset:" + record.offset());
}
kafkaConsumer.commitSync();
}
records = kafkaConsumer.poll(Duration.ofMillis(0));
}
}
}
// 消费者必须指定一个消费组
properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "");
// 消费者每次最多POLL的数量
properties.setProperty(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "");
// 消费者POLL的时间间隔
properties.setProperty(ConsumerConfig.MAX_POLL_INTERVAL_MS_DOC, "");
// 设置是否自动提交,默认为true
properties.setProperty(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "");
// 如果是自动提交,默认5s后提交,会发生丢失消息和重复消费情况
properties.setProperty(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "");
// 当一个新的消费组或者消费信息丢失后,在哪里开始进行消费。earliest:消费最早的消息。latest(默认):消费最近可用的消息。none:没有找到消费组消费数据时报异常。
更多配置信息查看ConsumerConfig类
如代码所示,设置offset的几种方式:
https://gitee.com/codeWBG/learn_kafka