那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为
例展示:
下面具体展开看一下:
系统(客户端)访问MySQL服务器前,做的第一件事就是建立TCP连接。
经过三次握手建立连接成功后,MySQL服务器对TCP传输过来的账号密码做身份认证、权限获取。
TCP连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后
面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。
SELECT id,name FROM student WHERE gender = '女';
这个SELECT查询先根据WHERE语句进行选取,而不是将表全部查询出来以后再进行gender过
滤。
这个SELECT查询先根据id和name进行属性投影,而不是将属性全部取出以后再进行过滤,将这两个查询条件连接起来生成最终查询结果。
Caches & Buffers: 查询缓存组件
小故事:
如果我问你9+8×16-3×2×17的值是多少,你可能会用计算器去算一下,最终结果 35 。如果再问你一遍9+8×16-
3×2×17的值是多少,你还用再傻呵呵的再算一遍吗?我们刚刚已经算过了,直接说答案就好了。
插件式存储引擎层( Storage Engines), 真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作 ,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。
MySQL 8.0.25默认支持的存储引擎如下:
所有的数据,数据库、表的定义,表的每一行的内容,索引,都是存在文件系统上,以文件的方式存
在的,并完成与存储引擎的交互。当然有些存储引擎比如InnoDB,也支持不使用文件系统直接管理裸设
备,但现代文件系统的实现使得这样做没有必要了。在文件系统之下,可以使用本地磁盘,可以使用
DAS、NAS、SAN等各种存储系统。
MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下:
简化为三层结构:
连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
SQL 层(服务层):对 SQL 语句进行查询处理;与数据库文件的存储方式无关;
存储引擎层:与数据库文件打交道,负责数据的存储和读取。
MySQL的查询流程:
1. 查询缓存 :Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃了这个功能。
大多数情况查询缓存就是个鸡肋,为什么呢?
查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在
MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。这就意味着查询匹配的鲁棒性大大降
低,只有相同的查询操作才会命中查询缓存。两个查询请求在任何字符上的不同(例如:空格、注释、
大小写),都会导致缓存不会命中。因此 MySQL 的查询缓存命中率不高。
同时,如果查询请求中包含某些系统函数、用户自定义变量和函数、一些系统表,如 mysql 、
information_schema、 performance_schema 数据库中的表,那这个请求就不会被缓存。以某些系统函数举例,可能同样的函数的两次调用会产生不一样的结果,比如函数NOW,每次调用都会产生最新的当前时间,如果在一个查询请求中调用了这个函数,那即使查询请求的文本信息都一样,那不同时间的两次查询也应该得到不同的结果,如果在第一次查询时就缓存了,那第二次查询的时候直接使用第一次查询的结果就是错误的!
此外,既然是缓存,那就有它缓存失效的时候。MySQL的缓存系统会监测涉及到的每张表,只要该表的
结构或者数据被修改,如对该表使用了INSERT、 UPDATE、DELETE、TRUNCATE TABLE、ALTER
TABLE、DROP TABLE或 DROP DATABASE语句,那使用该表的所有高速缓存查询都将变为无效并从高速缓存中删除!对于更新压力大的数据库来说,查询缓存的命中率会非常低。
2. 解析器 :在解析器中对 SQL 语句进行语法分析、语义分析。
分析器先做**“词法分析”**。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。 MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
SELECT employee_id,last_name FROM employees WHERE employee_id = 101;
接着,要做“语法分析”。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输
入的这个 SQL 语句是否满足 MySQL 语法。
select department_id,job_id,avg(salary) from employees group by department_id;
如果你的语句不正确,就会收到“you have an error in your sql syntax” 的错误提醒
如果SQL语句正确,则会生成一个这样的语法树:
在查询优化器中,可以分为逻辑查询优化阶段和物理查询优化阶段。
在优化器中会确定SQL语句的执行路径,比如是根据全表检索,还是根据索引检索等。
举例:如下语句是执行两个表的join:
select * from test 1 join test 2 using(ID)
where test 1 .name='zhangwei' and test 2 .name='mysql高级课程';
方案 1 :可以先从表 test 1 里面取出 name='zhangwei’的记录的 ID 值,再根据 ID 值关联到表 test 2 ,再判断 test 2 里面 name的值是否等于 ‘mysql高级课程’。
方案 2 :可以先从表 test 2 里面取出 name=‘mysql高级课程’ 的记录的 ID 值,再根据 ID 值关联到 test 1 ,再判断 test 1 里面 name的值是否等于 zhangwei。
这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。优化器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。
截止到现在,还没有真正去读写真实的表,仅仅只是产出了一个执行计划。于是就进入了执行器阶段。
在执行之前需要判断该用户是否具备权限。如果没有,就会返回权限错误。如果具备权限,就执行 SQL
查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。
比如:表 test 中,ID 字段没有索引,那么执行器的执行流程是这样的:
至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。
SQL 语句在 MySQL 中的流程是:SQL语句→查询缓存→解析器→优化器→执行器。
profiling=0 代表关闭,我们需要把 profiling 打开,即设置为 1 :
mysql> select @@profiling;
mysql> show variables like 'profiling';
mysql> set profiling= 1 ;
然后我们执行一个 SQL 查询(你可以执行任何一个 SQL 查询):
mysql> select * from employees;
查看当前会话所产生的所有 profiles:
mysql> show profiles; # 显示最近的几次查询
显示执行计划,查看程序的执行步骤:
mysql> show profile;
当然你也可以查询指定的 Query ID,比如:
mysql> show profile for query 7 ;
查询 SQL 的执行时间结果和上面是一样的。
此外,还可以查询更丰富的内容:
继续:
mysql> show profile cpu,block io for query 7 ;
mysql> SHOW PROFILE ALL FOR QUERY 1;
等价于
mysql> SELECT * FROM information_schema.profiling WHERE query_id = 1 ORDER BY seq;
上述操作在MySQL5.7中测试,发现前后两次相同的sql语句,执行的查询过程仍然是相同的。不是会使用缓存吗?这里我们需要显式开启查询缓存模式。在MySQL5.7中如下设置:
在 /etc/my.cnf 中新增一行:
query_cache_type= 1
systemctl restart mysqld
由于重启过服务,需要重新执行如下指令,开启profiling。
mysql> set profiling= 1 ;
mysql> select * from locations;
mysql> select * from locations;
显示执行计划,查看程序的执行步骤:
mysql> show profile for query 1 ;
mysql> show profile for query 2 ;
结论不言而喻。执行编号 2 时,比执行编号 1 时少了很多信息,从截图中可以看出查询语句直接从缓存中 获取数据。
随着Mysql版本的更新换代,其优化器也在不断的升级,优化器会分析不同执行顺序产生的性能消耗不同
而动态调整执行顺序。
需求:查询每个部门年龄高于 20 岁的人数且高于 20 岁人数不能少于 2 人,显示人数最多的第一名部门信息
下面是经常出现的查询顺序:
Oracle 中采用了共享池来判断 SQL 语句是否存在缓存和执行计划,通过这一步骤我们可以知道应该采用硬解析还是软解析。
我们先来看下 SQL 在 Oracle 中的执行过程:
从上面这张图中可以看出,SQL 语句在 Oracle 中经历了以下的几个步骤。
1 .语法检查: 检查 SQL 拼写是否正确,如果不正确,Oracle 会报语法错误。
2 .语义检查: 检查 SQL 中的访问对象是否存在。比如我们在写 SELECT 语句的时候,列名写错了,系统就会提示错误。语法检查和语义检查的作用是保证 SQL 语句没有错误。
3 .权限检查: 看用户是否具备访问该数据的权限。
4.共享池检查: 共享池(Shared Pool)是一块内存池, 最主要的作用是缓存 SQL 语句和该语句的执行计划。 Oracle 通过检查共享池是否存在 SQL 语句的执行计划,来判断进行软解析,还是硬解析。那软解析和硬解析又该怎么理解呢?
在共享池中,Oracle 首先对 SQL 语句进行 Hash 运算,然后根据 Hash 值在库缓存(Library Cache)中查找,如果存在 SQL 语句的执行计划,就直接拿来执行,直接进入“执行器”的环节,这就是软解析。
如果没有找到 SQL 语句和执行计划,Oracle 就需要创建解析树进行解析,生成执行计划,进入“优化器”
这个步骤,这就是硬解析。
5. 优化器:优化器中就是要进行硬解析,也就是决定怎么做,比如创建解析树,生成执行计划。
6. 执行器:当有了解析树和执行计划之后,就知道了 SQL 该怎么被执行,这样就可以在执行器中执
共享池是 Oracle 中的术语,包括了库缓存,数据字典缓冲区等。我们上面已经讲到了库缓存区,它主要
缓存 SQL 语句和执行计划。而数据字典缓冲区存储的是 Oracle 中的对象定义,比如表、视图、索引等对象。当对 SQL 语句进行解析的时候,如果需要相关的数据,会从数据字典缓冲区中提取。
库缓存这一个步骤,决定了 SQL 语句是否需要进行硬解析。为了提升 SQL 的执行效率,我们应该尽量
避免硬解析,因为在 SQL 的执行过程中,创建解析树,生成执行计划是很消耗资源的。
你可能会问,如何避免硬解析,尽量使用软解析呢?在 Oracle 中,绑定变量是它的一大特色。绑定变量
就是在 SQL 语句中使用变量,通过不同的变量取值来改变 SQL 的执行结果。这样做的好处是能提升软解析的可能性,不足之处在于可能会导致生成的执行计划不够优化,因此是否需要绑定变量还需要视情况而定。
举个例子,我们可以使用下面的查询语句:
SQL> select * from player where player_id = 10001 ;
你也可以使用绑定变量,如:
SQL> select * from player where player_id = :player_id;
这两个查询语句的效率在 Oracle 中是完全不同的。如果你在查询 player_id = 10001 之后,还会查询
10002 、 10003 之类的数据,那么每一次查询都会创建一个新的查询解析。而第二种方式使用了绑定变
量,那么在第一次查询之后,在共享池中就会存在这类查询的执行计划,也就是软解析。
因此, 我们可以通过使用绑定变量来减少硬解析,减少 Oracle 的解析工作量。 但是这种方式也有缺点,使用动态 SQL 的方式,因为参数不同,会导致 SQL 的执行效率不同,同时 SQL 优化也会比较困难。
Oracle的架构图:
简图:
小结:
Oracle 和 MySQL 在进行 SQL 的查询上面有软件实现层面的差异。Oracle 提出了共享池的概念,通过共享池来判断是进行软解析,还是硬解析。
了解了缓冲池的作用之后,我们还需要了解缓冲池的另一个特性:预读。
缓冲池的作用就是提升I/o效率,而我们进行读取数据的时候存在一个“局部性原理”,也就是说我们使用了一些数据,大概率还会使用它周围的一些数据,因此采用“预读”的机制提前加载,可以减少未来可能的磁盘I/О操作。
InnoDB存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页
面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操
作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内存来作为数据缓冲池,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访
问。
这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/O 的时间。要知道,这种策略对提
升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。
缓冲池和查询缓存是一个东西吗?不是。
首先我们需要了解在 InnoDB 存储引擎中,缓冲池都包括了哪些。
在 InnoDB 存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,如下图所示:
从图中,你能看到 InnoDB 缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应 Hash 和数据字典信息等。
缓存池的重要性:
缓存原则:
“位置 * 频次”这个原则,可以帮我们对 I/O 访问效率进行优化。
首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。
其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200 G,但是内存只有 16 G,缓冲池大小只有 1 G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会优先对使用频次高的热数据进行加载。
缓冲池的预读特性:
了解了缓冲池的作用之后,我们还需要了解缓冲池的另一个特性:预读。
缓冲池的作用就是提升I/O效率,而我们进行读取数据的时候存在一个“局部性原理”,也就是说我们使
用了一些数据,大概率还会使用它周围的一些数据,因此采用“预读”的机制提前加载,可以减少未来
可能的磁盘I/О操作。
那么什么是查询缓存呢?
查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在
MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表
发生变化,查询缓存就会失效,因此命中率低。
缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面
是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进 行读取。
缓存在数据库中的结构和作用如下图所示:
如果我们执行 SQL 语句的时候更新了缓存池中的数据,那么这些数据会马上同步到磁盘上吗?
如果你使用的是 InnoDB 存储引擎,可以通过查看 innodb_buffer_pool_size 变量来查看缓冲池的大
小。命令如下:
show variables like 'innodb_buffer_pool_size';
你能看到此时 InnoDB 的缓冲池大小只有 134217728 / 1024 / 1024 = 128 MB。我们可以修改缓冲池大小,比如改为 256 MB,方法如下:
set global innodb_buffer_pool_size = 268435456 ;
或者:
[server]
innodb_buffer_pool_size = 268435456
然后再来看下修改后的缓冲池大小,此时已成功修改成了 256 MB:
这样就表明我们要创建 2 个Buffer Pool实例。
我们看下如何查看缓冲池的个数,使用命令:
show variables like 'innodb_buffer_pool_instances';
[server]
innodb_buffer_pool_instances = 2
那每个Buffer Pool实例实际占多少内存空间呢?其实使用这个公式算出来的:
innodb_buffer_pool_size/innodb_buffer_pool_instances
也就是总共的大小除以实例的个数,结果就是每个Buffer Pool实例占用的大小。
Buffer Pool是MySQL内存结构中十分核心的一个组成,你可以先把它想象成一个黑盒子。
黑盒下的更新数据流程
答案: Redo Log & Undo Log