通过IDE如Idea编程实质上和前面的spark-shell和spark-sql相似,其他都是Spark编程的知识,下面以scala语言为示例,idea新建scala的maven项目
pom文件添加如下依赖
- <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
- <modelVersion>4.0.0</modelVersion>
- <groupId>cn.itxs</groupId>
- <artifactId>hoodie-spark-demo</artifactId>
- <version>1.0</version>
-
- <properties>
- <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
- <scala.version>2.12.10</scala.version>
- <scala.binary.version>2.12</scala.binary.version>
- <spark.version>3.3.0</spark.version>
- <hoodie.version>0.12.1</hoodie.version>
- <hadoop.version>3.3.4</hadoop.version>
- </properties>
-
- <dependencies>
- <dependency>
- <groupId>org.scala-lang</groupId>
- <artifactId>scala-library</artifactId>
- <version>${scala.version}</version>
- </dependency>
-
- <dependency>
- <groupId>org.apache.spark</groupId>
- <artifactId>spark-core_${scala.binary.version}</artifactId>
- <version>${spark.version}</version>
- <scope>provided</scope>
- </dependency>
-
- <dependency>
- <groupId>org.apache.spark</groupId>
- <artifactId>spark-sql_${scala.binary.version}</artifactId>
- <version>${spark.version}</version>
- <scope>provided</scope>
- </dependency>
-
- <dependency>
- <groupId>org.apache.spark</groupId>
- <artifactId>spark-hive_${scala.binary.version}</artifactId>
- <version>${spark.version}</version>
- <scope>provided</scope>
- </dependency>
-
- <dependency>
- <groupId>org.apache.hadoop</groupId>
- <artifactId>hadoop-client</artifactId>
- <version>${hadoop.version}</version>
- <scope>provided</scope>
- </dependency>
-
- <dependency>
- <groupId>org.apache.hudi</groupId>
- <artifactId>hudi-spark3.3-bundle_${scala.binary.version}</artifactId>
- <version>${hoodie.version}</version>
- <scope>provided</scope>
- </dependency>
- </dependencies>
-
- <build>
- <plugins>
- <plugin>
- <groupId>org.apache.maven.plugins</groupId>
- <artifactId>maven-compiler-plugin</artifactId>
- <version>3.10.1</version>
- <configuration>
- <source>1.8</source>
- <target>1.8</target>
- <encoding>${project.build.sourceEncoding}</encoding>
- </configuration>
- </plugin>
- <plugin>
- <groupId>org.scala-tools</groupId>
- <artifactId>maven-scala-plugin</artifactId>
- <version>2.15.2</version>
- <executions>
- <execution>
- <goals>
- <goal>compile</goal>
- <goal>testCompile</goal>
- </goals>
- </execution>
- </executions>
- </plugin>
- <plugin>
- <groupId>org.apache.maven.plugins</groupId>
- <artifactId>maven-shade-plugin</artifactId>
- <version>3.2.4</version>
- <executions>
- <execution>
- <phase>package</phase>
- <goals>
- <goal>shade</goal>
- </goals>
- <configuration>
- <filters>
- <filter>
- <artifact>*:*</artifact>
- <excludes>
- <exclude>META-INF/*.SF</exclude>
- <exclude>META-INF/*.DSA</exclude>
- <exclude>META-INF/*.RSA</exclude>
- </excludes>
- </filter>
- </filters>
- </configuration>
- </execution>
- </executions>
- </plugin>
- </plugins>
- </build>
- </project>
创建常量对象
- object Constant {
- val HUDI_STORAGE_PATH = "hdfs://192.168.5.53:9000/tmp/"
- }
插入hudi数据
- package cn.itxs
-
- import org.apache.spark.sql.SparkSession
- import org.apache.spark.SparkConf
- import org.apache.hudi.QuickstartUtils._
- import scala.collection.JavaConversions._
- import org.apache.spark.sql.SaveMode._
- import org.apache.hudi.DataSourceWriteOptions._
- import org.apache.hudi.config.HoodieWriteConfig._
-
- object InsertDemo {
- def main(args: Array[String]): Unit = {
- val sparkConf = new SparkConf()
- .setAppName(this.getClass.getSimpleName)
- .setMaster("local[*]")
- .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
-
- val sparkSession = SparkSession.builder()
- .config(sparkConf)
- .enableHiveSupport()
- .getOrCreate()
-
- val tableName = "hudi_trips_cow_idea"
- val basePath = Constant.HUDI_STORAGE_PATH+tableName
- val dataGen = new DataGenerator
- val inserts = convertToStringList(dataGen.generateInserts(10))
-
- val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts,2))
- df.write.format("hudi").
- options(getQuickstartWriteConfigs).
- option(PRECOMBINE_FIELD.key(), "ts").
- option(RECORDKEY_FIELD.key(), "uuid").
- option(PARTITIONPATH_FIELD.key(), "partitionpath").
- option(TBL_NAME.key(), tableName).
- mode(Overwrite).
- save(basePath)
-
- sparkSession.close()
- }
- }
由于依赖中scope是配置为provided,因此运行配置中勾选下面这项
运行InsertDemo程序写入hudi数据
运行ReadDemo程序读取hudi数据
通过mvn clean package打包后上传运行
- spark-submit \
- --class cn.itxs.ReadDemo \
- /home/commons/spark-3.3.0-bin-hadoop3/appjars/hoodie-spark-demo-1.0.jar
HoodieDeltaStreamer实用程序(hudi-utilities-bundle的一部分)提供了从不同源(如DFS或Kafka)中获取的方法,具有以下功能。
- # 拷贝hudi-utilities-bundle_2.12-0.12.1.jar到spark的jars目录
- cp /home/commons/hudi-release-0.12.1/packaging/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.12.1.jar jars/
- # 查看帮助文档,参数非常多,可以在有需要使用的时候查阅
- spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer /home/commons/spark-3.3.0-bin-hadoop3/jars/hudi-utilities-bundle_2.12-0.12.1.jar --help
该工具采用层次结构组成的属性文件,并具有提取数据、密钥生成和提供模式的可插入接口。在hudi-下提供了从kafka和dfs中摄取的示例配置
接下里以File Based Schema Provider和JsonKafkaSoiurce为示例演示如何使用
- # 创建topic
- bin/kafka-topics.sh --zookeeper zk1:2181,zk2:2181,zk3:2181 --create --partitions 1 --replication-factor 1 --topic data_test
然后编写demo程序持续向这个kafka的topic发送消息
- # 创建一个配置文件目录
- mkdir /home/commons/hudi-properties
- # 拷贝示例配置文件
- cp hudi-utilities/src/test/resources/delta-streamer-config/kafka-source.properties /home/commons/hudi-properties/
- cp hudi-utilities/src/test/resources/delta-streamer-config/base.properties /home/commons/hudi-properties/
定义avro所需的schema文件包括source和target,创建source文件 vim source-json-schema.avsc
- {
- "type" : "record",
- "name" : "Profiles",
- "fields" : [
- {
- "name" : "id",
- "type" : "long"
- }, {
- "name" : "name",
- "type" : "string"
- }, {
- "name" : "age",
- "type" : "int"
- }, {
- "name" : "partitions",
- "type" : "int"
- }
- ]
- }
拷贝一份为target文件
cp source-json-schema.avsc target-json-schema.avsc
修改kafka-source.properties的配置如下
- include=hdfs://hadoop2:9000/hudi-properties/base.properties
- # Key fields, for kafka example
- hoodie.datasource.write.recordkey.field=id
- hoodie.datasource.write.partitionpath.field=partitions
- # schema provider configs
- #hoodie.deltastreamer.schemaprovider.registry.url=http://localhost:8081/subjects/impressions-value/versions/latest
- hoodie.deltastreamer.schemaprovider.source.schema.file=hdfs://hadoop2:9000/hudi-properties/source-json-schema.avsc
- hoodie.deltastreamer.schemaprovider.target.schema.file=hdfs://hadoop2:9000/hudi-properties/target-json-schema.avsc
- # Kafka Source
- #hoodie.deltastreamer.source.kafka.topic=uber_trips
- hoodie.deltastreamer.source.kafka.topic=data_test
- #Kafka props
- bootstrap.servers=kafka1:9092,kafka2:9092,kafka3:9092
- auto.offset.reset=earliest
- #schema.registry.url=http://localhost:8081
- group.id=mygroup
将本地hudi-properties文件夹上传到HDFS
- cd ..
- hdfs dfs -put hudi-properties/ /
- # 运行导入命令
- spark-submit \
- --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \
- /home/commons/spark-3.3.0-bin-hadoop3/jars/hudi-utilities-bundle_2.12-0.12.1.jar \
- --props hdfs://hadoop2:9000/hudi-properties/kafka-source.properties \
- --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider \
- --source-class org.apache.hudi.utilities.sources.JsonKafkaSource \
- --source-ordering-field id \
- --target-base-path hdfs://hadoop2:9000/tmp/hudi/user_test \
- --target-table user_test \
- --op BULK_INSERT \
- --table-type MERGE_ON_READ
查看hdfs目录已经有表目录和分区目录
通过spark-sql查询从kafka摄取的数据
- use hudi_spark;
- create table user_test using hudi
- location 'hdfs://hadoop2:9000/tmp/hudi/user_test';
- select * from user_test limit 10;
- # 解压进入flink目录,这里我就用之前flink的环境,详细可以查看之前关于flink的文章
- cd /home/commons/flink-1.15.1
- # 拷贝编译好的jar到flink的lib目录
- cp /home/commons/hudi-release-0.12.1/packaging/hudi-flink-bundle/target/hudi-flink1.15-bundle-0.12.1.jar lib/
- # 拷贝guava包,解决依赖冲突
- cp /home/commons/hadoop/share/hadoop/common/lib/guava-27.0-jre.jar lib/
- # 配置hadoop环境变量和启动hadoop
- export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
修改配置文件 vi conf/flink-conf.yaml
- classloader.check-leaked-classloader: false
- taskmanager.numberOfTaskSlots: 4
- state.backend: rocksdb
- state.checkpoints.dir: hdfs://hadoop2:9000/checkpoints/flink
- state.backend.incremental: true
- execution.checkpointing.interval: 5min
修改workers文件,也可以多配制几个(伪分布式或完全分布式),官方提供示例是4个
- localhost
- localhost
- localhost
- # 在本机上启动三个TaskManagerRunner和一个Standalone伪分布式集群
- ./bin/start-cluster.sh
- # 查看进程确认
- jps -l
- # 启动内嵌的flink sql客户端
- ./bin/sql-client.sh embedded
- show databases;
- show tables;
yarn-session 模式
- # 拷贝jar到flink的lib目录
- cp /home/commons/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.3.4.jar lib/
- # 先停止上面启动Standalone伪分布式集群
- ./bin/stop-cluster.sh
- # 启动yarn-session分布式集群
- ./bin/yarn-session.sh --detached
查看yarn上已经有一个Flink session集群job, ID为application_1669357770610_0015
查看Flink的Web UI可用TaskSlots为0,可确认已切换为yarn管理资源非分配
- # 由于使用内嵌模式管理元数据,元数据是保存在内存中,关闭sql-client后则元数据也会消失,生产环境建议使用如Hive元数据管理方式,后面再做配置
- ./bin/sql-client.sh embedded -s yarn-session
- show databases;
- show tables;
- CREATE TABLE t1(
- uuid VARCHAR(20),
- name VARCHAR(10),
- age INT,
- ts TIMESTAMP(3),
- `partition` VARCHAR(20),
- PRIMARY KEY(uuid) NOT ENFORCED
- )
- PARTITIONED BY (`partition`)
- WITH (
- 'connector' = 'hudi',
- 'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t1',
- 'table.type' = 'MERGE_ON_READ' -- 创建一个MERGE_ON_READ表,默认情况下是COPY_ON_WRITE表
- );
- -- 插入数据
- INSERT INTO t1 VALUES
- ('id1','Danny',23,TIMESTAMP '2022-11-25 00:00:01','par1'),
- ('id2','Stephen',33,TIMESTAMP '2022-11-25 00:00:02','par1'),
- ('id3','Julian',53,TIMESTAMP '2022-11-25 00:00:03','par2'),
- ('id4','Fabian',31,TIMESTAMP '2022-11-25 00:00:04','par2'),
- ('id5','Sophia',18,TIMESTAMP '2022-11-25 00:00:05','par3'),
- ('id6','Emma',20,TIMESTAMP '2022-11-25 00:00:06','par3'),
- ('id7','Bob',44,TIMESTAMP '2022-11-25 00:00:07','par4'),
- ('id8','Han',56,TIMESTAMP '2022-11-25 00:00:08','par4');
查看Flink Web UI Job的信息
- # 查询数据
- select * from t1;
- # 更新数据
- INSERT INTO t1 VALUES
- ('id1','Danny',28,TIMESTAMP '2022-11-25 00:00:01','par1');
- # 查询数据
- select * from t1;
- -- 设置结果模式为tableau,在CLI中直接显示结果;另外还有table和changelog;changelog模式可以获取+I,-U之类动作数据;
- set 'sql-client.execution.result-mode' = 'tableau';
- CREATE TABLE sourceT (
- uuid varchar(20),
- name varchar(10),
- age int,
- ts timestamp(3),
- `partition` varchar(20),
- PRIMARY KEY(uuid) NOT ENFORCED
- ) WITH (
- 'connector' = 'datagen',
- 'rows-per-second' = '1'
- );
-
- CREATE TABLE t2 (
- uuid varchar(20),
- name varchar(10),
- age int,
- ts timestamp(3),
- `partition` varchar(20),
- PRIMARY KEY(uuid) NOT ENFORCED
- )
- WITH (
- 'connector' = 'hudi',
- 'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t2',
- 'table.type' = 'MERGE_ON_READ',
- 'read.streaming.enabled' = 'true',
- 'read.streaming.check-interval' = '4'
- );
-
- insert into t2 select * from sourceT;
- select * from t2;
在0.11.0增加了一种高效、轻量级的索引类型bucket index,其为字节贡献回馈给hudi社区。
org.apache.hudi.table.action.commit.SparkBucketIndexPartitioner
。对于 Flink,设置index.type=BUCKET.前面基于内容管理hudi元数据的方式每次重启sql客户端就丢掉了,Hudi Catalog则是可以持久化元数据;Hudi Catalog支持多种模式,包括dfs和hms,hudi还可以直接集群hive使用,后续再一步步演示,现在先简单看下dfs模式的Hudi Catalog,先添加启动sql文件,vim conf/sql-client-init.sql
- create catalog hudi_catalog
- with(
- 'type' = 'hudi',
- 'mode' = 'dfs',
- 'catalog.path'='/tmp/hudi_catalog'
- );
- use catalog hudi_catalog;
创建目录并启动,建表测试
- hdfs dfs -mkdir /tmp/hudi_catalog
- ./bin/sql-client.sh embedded -i conf/sql-client-init.sql -s yarn-session
查看hdfs的数据如下,退出客户端后重新登录客户端还可以查到上面的hudi_catalog及其库和表的数据。