• 哈希表题目:有效的数独


    题目

    标题和出处

    标题:有效的数独

    出处:36. 有效的数独

    难度

    2 级

    题目描述

    要求

    请你判断一个 9 × 9 \texttt{9} \times \texttt{9} 9×9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。

    1. 每一行必须包含数字 1-9 \texttt{1-9} 1-9 且没有重复。
    2. 每一行必须包含数字 1-9 \texttt{1-9} 1-9 且没有重复。
    3. 每一个九宫格必须包含数字 1-9 \texttt{1-9} 1-9 且没有重复。

    注意:

    • 一个有效的数独(部分已被填充)不一定是可解的。
    • 只需要根据以上规则,验证已经填入的数字是否有效即可。

    示例

    示例 1:

    示例 1

    输入: board   =   \texttt{board = } board = 
    [["5","3",".",".","7",".",".",".","."] \texttt{[["5","3",".",".","7",".",".",".","."]} [["5","3",".",".","7",".",".",".","."]
    ,["6",".",".","1","9","5",".",".","."] \texttt{,["6",".",".","1","9","5",".",".","."]} ,["6",".",".","1","9","5",".",".","."]
    ,[".","9","8",".",".",".",".","6","."] \texttt{,[".","9","8",".",".",".",".","6","."]} ,[".","9","8",".",".",".",".","6","."]
    ,["8",".",".",".","6",".",".",".","3"] \texttt{,["8",".",".",".","6",".",".",".","3"]} ,["8",".",".",".","6",".",".",".","3"]
    ,["4",".",".","8",".","3",".",".","1"] \texttt{,["4",".",".","8",".","3",".",".","1"]} ,["4",".",".","8",".","3",".",".","1"]
    ,["7",".",".",".","2",".",".",".","6"] \texttt{,["7",".",".",".","2",".",".",".","6"]} ,["7",".",".",".","2",".",".",".","6"]
    ,[".","6",".",".",".",".","2","8","."] \texttt{,[".","6",".",".",".",".","2","8","."]} ,[".","6",".",".",".",".","2","8","."]
    ,[".",".",".","4","1","9",".",".","5"] \texttt{,[".",".",".","4","1","9",".",".","5"]} ,[".",".",".","4","1","9",".",".","5"]
    ,[".",".",".",".","8",".",".","7","9"]] \texttt{,[".",".",".",".","8",".",".","7","9"]]} ,[".",".",".",".","8",".",".","7","9"]]
    输出: true \texttt{true} true

    示例 2:

    输入: board   =   \texttt{board = } board = 
    [["8","3",".",".","7",".",".",".","."] \texttt{[["8","3",".",".","7",".",".",".","."]} [["8","3",".",".","7",".",".",".","."]
    ,["6",".",".","1","9","5",".",".","."] \texttt{,["6",".",".","1","9","5",".",".","."]} ,["6",".",".","1","9","5",".",".","."]
    ,[".","9","8",".",".",".",".","6","."] \texttt{,[".","9","8",".",".",".",".","6","."]} ,[".","9","8",".",".",".",".","6","."]
    ,["8",".",".",".","6",".",".",".","3"] \texttt{,["8",".",".",".","6",".",".",".","3"]} ,["8",".",".",".","6",".",".",".","3"]
    ,["4",".",".","8",".","3",".",".","1"] \texttt{,["4",".",".","8",".","3",".",".","1"]} ,["4",".",".","8",".","3",".",".","1"]
    ,["7",".",".",".","2",".",".",".","6"] \texttt{,["7",".",".",".","2",".",".",".","6"]} ,["7",".",".",".","2",".",".",".","6"]
    ,[".","6",".",".",".",".","2","8","."] \texttt{,[".","6",".",".",".",".","2","8","."]} ,[".","6",".",".",".",".","2","8","."]
    ,[".",".",".","4","1","9",".",".","5"] \texttt{,[".",".",".","4","1","9",".",".","5"]} ,[".",".",".","4","1","9",".",".","5"]
    ,[".",".",".",".","8",".",".","7","9"]] \texttt{,[".",".",".",".","8",".",".","7","9"]]} ,[".",".",".",".","8",".",".","7","9"]]
    输出: false \texttt{false} false
    解释:除了第一行的第一个数字从 5 \texttt{5} 5 改为 8 \texttt{8} 8 以外,空格内其他数字均与示例 1 相同。但由于位于左上角的九宫格内有两个 8 \texttt{8} 8 存在,因此这个数独是无效的。

    数据范围

    • board.length = 9 \texttt{board.length} = \texttt{9} board.length=9
    • board[i].length = 9 \texttt{board[i].length} = \texttt{9} board[i].length=9
    • board[i][j] \texttt{board[i][j]} board[i][j] 是一位数字 1-9 \texttt{1-9} 1-9 或者 ‘.’ \texttt{`.'} ‘.’

    解法

    思路和算法

    这道题要求判断一个已经填入部分数字的数独是否有效,不需要考虑数独是否有解,只需要考虑每一行、每一列和每一个九宫格中的数字是否都是唯一的。以下将一行、一列和一个九宫格统称为「判断单位」。

    为了判断数独是否有效,需要记录每一个判断单位中的每个数字的出现情况。数独中的每一个单元格都对应一行、一列和一个九宫格,遍历数组一次即可判断数独是否有效。

    对于数独的第 i i i 行第 j j j 列的单元格,其中 0 ≤ i , j < 9 0 \le i, j < 9 0i,j<9,其所在的行下标和列下标分别为 i i i j j j,其所在的九宫格的行编号和列编号分别为 ⌊ i 3 ⌋ \Big\lfloor \dfrac{i}{3} \Big\rfloor 3i ⌊ j 3 ⌋ \Big\lfloor \dfrac{j}{3} \Big\rfloor 3j,由于行编号和列编号都小于 3 3 3,因此可以将行编号和列编号转换为九宫格的编号: ⌊ i 3 ⌋ × 3 + ⌊ j 3 ⌋ \Big\lfloor \dfrac{i}{3} \Big\rfloor \times 3 + \Big\lfloor \dfrac{j}{3} \Big\rfloor 3i×3+3j

    有效的数独要求每一个判断单位中每一个数字都只能出现一次,因此可以使用哈希表记录每个数字的出现次数,如果出现次数大于一次则是无效的数独。其实,并不需要记录每个数字的出现次数,只需要记录每个数字是否出现过即可。记录每个数字是否出现过的做法如下。

    对于遍历到的每个单元格,如果尚未填入数字则跳过,如果已经填入数字则执行以下操作:

    1. 判断该单元格所在的三个判断单位中该数字是否已经出现过,如果至少一个判断单位中该数字已经出现过,则和当前遍历到的单元格重复,因此是无效的数独,返回 false \text{false} false

    2. 如果三个判断单位中该数字都没有出现过,则将三个判断单位中该数字的状态都更新为已经出现过。

    如果遍历结束之后没有出现同一个判断单位中有重复数字的情况,则是有效的数独,返回 true \text{true} true

    实现方面有两点技巧:

    1. 由于数独中的数字范围有限且是连续的正整数,因此可以使用数组代替哈希表;

    2. 对于每个判断单位,可以将代替哈希表的数组长度设为 10 10 10,其目的是将下标范围设为 0 0 0 9 9 9,使得下标可以直接和数字对应,不需要进行下标转换。

    代码

    class Solution {
        public boolean isValidSudoku(char[][] board) {
            boolean[][] rows = new boolean[9][10];
            boolean[][] columns = new boolean[9][10];
            boolean[][] subboxes = new boolean[9][10];
            for (int i = 0; i < 9; i++) {
                for (int j = 0; j < 9; j++) {
                    char c = board[i][j];
                    if (c == '.') {
                        continue;
                    }
                    int subboxRowIndex = i / 3, subboxColumnIndex = j / 3;
                    int subboxIndex = subboxRowIndex * 3 + subboxColumnIndex;
                    int digit = c - '0';
                    if (rows[i][digit] || columns[j][digit] || subboxes[subboxIndex][digit]) {
                        return false;
                    }
                    rows[i][digit] = true;
                    columns[j][digit] = true;
                    subboxes[subboxIndex][digit] = true;
                }
            }
            return true;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    复杂度分析

    • 时间复杂度: O ( 1 ) O(1) O(1)。数独的大小固定,有 81 81 81 个单元格,对每个单元格遍历一次。

    • 空间复杂度: O ( 1 ) O(1) O(1)。空间复杂度主要取决于记录每一行、每一列和每一个九宫格中出现的数字的哈希表,由于数独的大小固定,因此哈希表的空间也是固定的。

  • 相关阅读:
    Python | 刷题笔记
    注意:Spring Boot 2.7开始spring.factories不推荐使用了,接下来这么玩...
    外卖小程序系统:数字化时代餐饮业的技术奇迹
    QT中文乱码解决方案与乱码的原因
    阿里云服务器购买
    Ubuntu18.04配置Cube-SLAM
    开源相机管理库Aravis学习(一)——安装
    第十章 开源许可证
    CleanMyMac X果粉装机必备电脑优化工具性能提升X倍
    FFmpeg 硬件加速介绍
  • 原文地址:https://blog.csdn.net/stormsunshine/article/details/121480176