• 【LeetCode】三个无重叠子数组的最大和 [H](动态规划)


    689. 三个无重叠子数组的最大和 - 力扣(LeetCode)

    一、题目

    给你一个整数数组 nums 和一个整数 k ,找出三个长度为 k 、互不重叠、且全部数字和(3 * k 项)最大的子数组,并返回这三个子数组。

    以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。

    示例 1:
    输入:nums = [1,2,1,2,6,7,5,1], k = 2
    输出:[0,3,5]
    解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。
    也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。

    示例 2:
    输入:nums = [1,2,1,2,1,2,1,2,1], k = 2
    输出:[0,2,4]

    提示:

    二、代码

    1. class Solution {
    2. public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
    3. int n = nums.length;
    4. // left[i]:从0~i范围上长度为k的子数组中,累加和最大是多少
    5. int[] left = new int[n];
    6. // leftStartIndex[i]:从0~i范围上长度为k的子数组中,累加和最大的起始下标是是多少,和left[]是成对使用的
    7. int[] leftStartIndex = new int[n];
    8. // right[i]:从i~n-1范围上长度为k的子数组中,累加和最大是多少
    9. int[] right = new int[n];
    10. // rightStartIndex[i]:从i~n-1范围上长度为k的子数组中,累加和最大的起始下标是是多少,和left[]是成对使用的
    11. int[] rightStartIndex = new int[n];
    12. // 构造left[]和leftStartIndex[]
    13. int sum = 0;
    14. // 先生成第一个长度为k的子数组的窗口
    15. for (int i = 0; i < k; i++) {
    16. sum += nums[i];
    17. }
    18. left[k - 1] = sum;
    19. leftStartIndex[k - 1] = 0;
    20. // 窗口向右滑动,构造left[]和leftStartIndex[]
    21. for (int i = k; i < n; i++) {
    22. sum = sum - nums[i - k] + nums[i];
    23. // 比较以i结尾的长度为k的子数组累加和和left[i - 1]最大累加和,哪个大就将哪个值赋值给left,并记录当前这种情况的子数组起始位置。
    24. // 这里要写等于号,因为要保证值相同的情况下,字典序小的返回
    25. if (left[i - 1] >= sum) {
    26. left[i] = left[i - 1];
    27. leftStartIndex[i] = leftStartIndex[i - 1];
    28. } else {
    29. left[i] = sum;
    30. leftStartIndex[i] = i - k + 1;
    31. }
    32. }
    33. // 构造right[]和rightStartIndex[]
    34. sum = 0;
    35. // 先生成第一个长度为k的子数组的窗口
    36. for (int i = n - 1; i >= n - k; i--) {
    37. sum += nums[i];
    38. }
    39. right[n - k] = sum;
    40. rightStartIndex[n - k] = n - k;
    41. // 窗口向左滑动,构造right[]和rightStartIndex[]
    42. for (int i = n - k - 1; i >= 0; i--) {
    43. sum = sum - nums[i + k] + nums[i];
    44. // 比较以i开始的长度为k的子数组累加和和right[i + 1]最大累加和,哪个大就将哪个值赋值给right,并记录当前这种情况的子数组起始位置。
    45. // 这里不写等于号,因为要保证值相同的情况下,字典序小的返回
    46. if (right[i + 1] > sum) {
    47. right[i] = right[i + 1];
    48. rightStartIndex[i] = rightStartIndex[i + 1];
    49. } else {
    50. right[i] = sum;
    51. rightStartIndex[i] = i;
    52. }
    53. }
    54. // 构造长度为k的窗口,保证窗口的左部分和右部分至少有k个字符,然后将这个窗口向右滑动尝试所有的情况,然后从左右部分找到最大累加和的子数组,将所有情况都列举一边,找打三个数组累加和最大的情况,并将他们的起始位置返回
    55. sum = 0;
    56. // 一开始要保证左部分至少有k个字符
    57. for (int i = k - 1; i < 2 * k - 1; i++) {
    58. sum += nums[i];
    59. }
    60. int max = Integer.MIN_VALUE;
    61. int[] ans = new int[3];
    62. int ansSum;
    63. // 窗口做边界不能超过这个位置,因为要保证右部分至少有k个字符
    64. int limit = n - 2 * k;
    65. for (int l = k; l <= limit; l++) {
    66. int r = l + k - 1;
    67. sum = sum - nums[l - 1] + nums[r];
    68. // 计算当前情况三个子数组的累加和
    69. ansSum = left[l - 1] + sum + right[r + 1];
    70. // 如果大于当前最大累加和,则重新更新max
    71. if (max < ansSum) {
    72. max = ansSum;
    73. ans[0] = leftStartIndex[l - 1];
    74. ans[1] = l;
    75. ans[2] = rightStartIndex[r + 1];
    76. }
    77. }
    78. return ans;
    79. }
    80. }

    三、解题思路 

    我们要选三个不相交的长度为k的子数组。

    先让L到R的距离为K,L...R是中间的子数组,这就算是找到了一个子数组,然后再从0~L-1范围上找到一个长度为k的子数组,从R+1~N-1范围上找到一个长度为K的子数组,这样一共就找到了三个子数组。

    后我们再让L~R向右滑动,尝试所有可能的中间数组的情况,当完成处理后,就找所有情况中三个字数组累加和最大的那一组,然后将它们的起始位置返回即可。

  • 相关阅读:
    Day11.2:标签的使用
    C++11新特性详细
    【Linux学习笔记】基础IO
    【Lilishop商城】No2-7.确定软件架构搭建六(本篇包括延时任务,会用到rocketmq、redis)
    心理健康数据集:mental_health_chatbot_dataset
    MapReduce核心原理
    企业直播平台需要满足什么功能才可以
    解决uniapp微信小程序canvas不能引入字体的问题
    Docker技术全景:推动云原生架构的关键力量
    C++17完整导引-组件之std::variant
  • 原文地址:https://blog.csdn.net/cy973071263/article/details/128062704