• 【学习QT必备的C++基础】C++继承、派生与多态


    C++继承和派生简明教程

    已剪辑自: http://c.biancheng.net/view/2264.html

    C++ 中的继承是类与类之间的关系,是一个很简单很直观的概念,与现实世界中的继承类似,例如儿子继承父亲的财产。

    **继承(Inheritance)**可以理解为一个类从另一个类获取成员变量和成员函数的过程。例如类 B 继承于类 A,那么 B 就拥有 A 的成员变量和成员函数。

    在C++中,**派生(Derive)**和继承是一个概念,只是站的角度不同。继承是儿子接收父亲的产业,派生是父亲把产业传承给儿子。

    被继承的类称为父类或基类,继承的类称为子类或派生类。“子类”和“父类”通常放在一起称呼,“基类”和“派生类”通常放在一起称呼。

    派生类除了拥有基类的成员,还可以定义自己的新成员,以增强类的功能。

    以下是两种典型的使用继承的场景:

    1. 当你创建的新类与现有的类相似,只是多出若干成员变量或成员函数时,可以使用继承,这样不但会减少代码量,而且新类会拥有基类的所有功能。

    2. 当你需要创建多个类,它们拥有很多相似的成员变量或成员函数时,也可以使用继承。可以将这些类的共同成员提取出来,定义为基类,然后从基类继承,既可以节省代码,也方便后续修改成员。

    下面我们定义一个基类 People,然后由此派生出 Student 类:

    #include
    using namespace std;
    //基类 Pelple
    class People{
    public:
        void setname(char *name);
        void setage(int age);
        char *getname();
        int getage();
    private:
        char *m_name;
        int m_age;
    };
    void People::setname(char *name){ m_name = name; }
    void People::setage(int age){ m_age = age; }
    char* People::getname(){ return m_name; }
    int People::getage(){ return m_age;}
    //派生类 Student
    class Student: public People{
    public:
        void setscore(float score);
        float getscore();
    private:
        float m_score;
    };
    void Student::setscore(float score){ m_score = score; }
    float Student::getscore(){ return m_score; }
    int main(){
        Student stu;
        stu.setname("小明");
        stu.setage(16);
        stu.setscore(95.5f);
        cout<
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35

    运行结果:
    小明的年龄是 16,成绩是 95.5

    本例中,People 是基类,Student 是派生类。Student 类继承了 People 类的成员,同时还新增了自己的成员变量 score 和成员函数 setscore()、getscore()。这些继承过来的成员,可以通过子类对象访问,就像自己的一样。

    请认真观察代码第21行:

    class Student: public People

    这就是声明派生类的语法。class 后面的“Student”是新声明的派生类,冒号后面的“People”是已经存在的基类。在“People”之前有一关键宇 public,用来表示是公有继承。

    由此总结出继承的一般语法为:

    class 派生类名:[继承方式] 基类名{
    派生类新增加的成员
    };

    继承方式包括 public(公有的)、private(私有的)和 protected(受保护的),此项是可选的,如果不写,那么默认为 private。我们将在下节详细讲解这些不同的继承方式。

    C++三种继承方式

    已剪辑自: http://c.biancheng.net/view/2269.html

    C++继承的一般语法为:

    class 派生类名:[继承方式] 基类名{
    派生类新增加的成员
    };

    继承方式限定了基类成员在派生类中的访问权限,包括 public(公有的)、private(私有的)和 protected(受保护的)。此项是可选项,如果不写,默认为 private(成员变量和成员函数默认也是 private)。

    现在我们知道,public、protected、private 三个关键字除了可以修饰类的成员,还可以指定继承方式。

    public、protected、private 修饰类的成员

    类成员的访问权限由高到低依次为 public --> protected --> private,我们在《C++类成员的访问权限以及类的封装》一节中讲解了 public 和 private:public 成员可以通过对象来访问,private 成员不能通过对象访问。

    现在再来补充一下 protected。protected 成员和 private 成员类似,也不能通过对象访问。但是当存在继承关系时,protected 和 private 就不一样了:基类中的 protected 成员可以在派生类中使用,而基类中的 private 成员不能在派生类中使用,下面是详细讲解。

    public、protected、private 指定继承方式

    不同的继承方式会影响基类成员在派生类中的访问权限。

    1) public继承方式

    • 基类中所有 public 成员在派生类中为 public 属性;
    • 基类中所有 protected 成员在派生类中为 protected 属性;
    • 基类中所有 private 成员在派生类中不能使用。

    2) protected继承方式

    • 基类中的所有 public 成员在派生类中为 protected 属性;
    • 基类中的所有 protected 成员在派生类中为 protected 属性;
    • 基类中的所有 private 成员在派生类中不能使用。

    3) private继承方式

    • 基类中的所有 public 成员在派生类中均为 private 属性;
    • 基类中的所有 protected 成员在派生类中均为 private 属性;
    • 基类中的所有 private 成员在派生类中不能使用。

    通过上面的分析可以发现:

    1. 基类成员在派生类中的访问权限不得高于继承方式中指定的权限。例如,当继承方式为 protected 时,那么基类成员在派生类中的访问权限最高也为 protected,高于 protected 的会降级为 protected,但低于 protected 不会升级。再如,当继承方式为 public 时,那么基类成员在派生类中的访问权限将保持不变。

    也就是说,继承方式中的 public、protected、private 是用来指明基类成员在派生类中的最高访问权限的。

    1. 不管继承方式如何,基类中的 private 成员在派生类中始终不能使用(不能在派生类的成员函数中访问或调用)。

    2. 如果希望基类的成员能够被派生类继承并且毫无障碍地使用,那么这些成员只能声明为 public 或 protected;只有那些不希望在派生类中使用的成员才声明为 private。

    3. 如果希望基类的成员既不向外暴露(不能通过对象访问),还能在派生类中使用,那么只能声明为 protected。

    注意,我们这里说的是基类的 private 成员不能在派生类中使用,并没有说基类的 private 成员不能被继承。实际上,基类的 private 成员是能够被继承的,并且(成员变量)会占用派生类对象的内存,它只是在派生类中不可见,导致无法使用罢了。private 成员的这种特性,能够很好的对派生类隐藏基类的实现,以体现面向对象的封装性。

    下表汇总了不同继承方式对不同属性的成员的影响结果 继承方式/基类成员 public成员 protected成员 private成员 public继承 protected继承 private继承

    publicprotected不可见
    protectedprotected不可见
    privateprivate不可见

    由于 private 和 protected 继承方式会改变基类成员在派生类中的访问权限,导致继承关系复杂,所以实际开发中我们一般使用 public。

    【示例】演示类的继承关系。

    #include
    using namespace std;
    //基类People
    class People{
    public:
        void setname(char *name);
        void setage(int age);
        void sethobby(char *hobby);
        char *gethobby();
    protected:
        char *m_name;
        int m_age;
    private:
        char *m_hobby;
    };
    void People::setname(char *name){ m_name = name; }
    void People::setage(int age){ m_age = age; }
    void People::sethobby(char *hobby){ m_hobby = hobby; }
    char *People::gethobby(){ return m_hobby; }
    //派生类Student
    class Student: public People{
    public:
        void setscore(float score);
    protected:
        float m_score;
    };
    void Student::setscore(float score){ m_score = score; }
    //派生类Pupil
    class Pupil: public Student{
    public:
        void setranking(int ranking);
        void display();
    private:
        int m_ranking;
    };
    void Pupil::setranking(int ranking){ m_ranking = ranking; }
    void Pupil::display(){
        cout<
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49

    运行结果:
    小明的年龄是15,考试成绩为92.5分,班级排名第4,TA喜欢乒乓球。

    这是一个多级继承的例子,Student 继承自 People,Pupil 又继承自 Student,它们的继承关系为 People --> Student --> Pupil。Pupil 是最终的派生类,它拥有基类的 m_name、m_age、m_score、m_hobby 成员变量以及 setname()、setage()、sethobby()、gethobby()、setscore() 成员函数。

    注意,在派生类 Pupil 的成员函数 display() 中,我们借助基类的 public 成员函数 gethobby() 来访问基类的 private 成员变量 m_hobby,因为 m_hobby 是 private 属性的,在派生类中不可见,所以只能借助基类的 public 成员函数 sethobby()、gethobby() 来访问。

    在派生类中访问基类 private 成员的唯一方法就是借助基类的非 private 成员函数,如果基类没有非 private 成员函数,那么该成员在派生类中将无法访问。

    改变访问权限

    使用 using 关键字可以改变基类成员在派生类中的访问权限,例如将 public 改为 private、将 protected 改为 public。

    注意:using 只能改变基类中 public 和 protected 成员的访问权限,不能改变 private 成员的访问权限,因为基类中 private 成员在派生类中是不可见的,根本不能使用,所以基类中的 private 成员在派生类中无论如何都不能访问。

    using 关键字使用示例:

    #include
    using namespace std;
    //基类People
    class People {
    public:
        void show();
    protected:
        char *m_name;
        int m_age;
    };
    void People::show() {
        cout << m_name << "的年龄是" << m_age << endl;
    }
    //派生类Student
    class Student : public People {
    public:
        void learning();
    public:
        using People::m_name;  //将protected改为public
        using People::m_age;  //将protected改为public
        float m_score;
    private:
        using People::show;  //将public改为private
    };
    void Student::learning() {
        cout << "我是" << m_name << ",今年" << m_age << "岁,这次考了" << m_score << "分!" << endl;
    }
    int main() {
        Student stu;
        stu.m_name = "小明";
        stu.m_age = 16;
        stu.m_score = 99.5f;
        stu.show();  //compile error
        stu.learning();
        return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    代码中首先定义了基类 People,它包含两个 protected 属性的成员变量和一个 public 属性的成员函数。定义 Student 类时采用 public 继承方式,People 类中的成员在 Student 类中的访问权限默认是不变的。

    不过,我们使用 using 改变了它们的默认访问权限,如代码第 21~25 行所示,将 show() 函数修改为 private 属性的,是降低访问权限,将 name、age 变量修改为 public 属性的,是提高访问权限。

    因为 show() 函数是 private 属性的,所以代码第 36 行会报错。把该行注释掉,程序输出结果为:
    我是小明,今年16岁,这次考了99.5分!

    C++继承时的名字遮蔽问题

    已剪辑自: http://c.biancheng.net/view/2271.html

    如果派生类中的成员(包括成员变量和成员函数)和基类中的成员重名,那么就会遮蔽从基类继承过来的成员。所谓遮蔽,就是在派生类中使用该成员(包括在定义派生类时使用,也包括通过派生类对象访问该成员)时,实际上使用的是派生类新增的成员,而不是从基类继承来的。

    下面是一个成员函数的名字遮蔽的例子:

    #include
    using namespace std;
    //基类People
    class People{
    public:
        void show();
    protected:
        char *m_name;
        int m_age;
    };
    void People::show(){
        cout<<"嗨,大家好,我叫"<

运行结果:
小明的年龄是16,成绩是90.5
嗨,大家好,我叫小明,今年16岁

本例中,基类 People 和派生类 Student 都定义了成员函数 show(),它们的名字一样,会造成遮蔽。第 37 行代码中,stu 是 Student 类的对象,默认使用 Student 类的 show() 函数。

但是,基类 People 中的 show() 函数仍然可以访问,不过要加上类名和域解析符,如第 39 行代码所示。

基类成员函数和派生类成员函数不构成重载

基类成员和派生类成员的名字一样时会造成遮蔽,这句话对于成员变量很好理解,对于成员函数要引起注意,不管函数的参数如何,只要名字一样就会造成遮蔽。换句话说,基类成员函数和派生类成员函数不会构成重载,如果派生类有同名函数,那么就会遮蔽基类中的所有同名函数,不管它们的参数是否一样。

下面的例子很好的说明了这一点:

#include
using namespace std;
//基类Base
class Base{
public:
    void func();
    void func(int);
};
void Base::func(){ cout<<"Base::func()"<

本例中,Base 类的func()func(int)和 Derived 类的func(char *)func(bool)四个成员函数的名字相同,参数列表不同,它们看似构成了重载,能够通过对象 d 访问所有的函数,实则不然,Derive 类的 func 遮蔽了 Base 类的 func,导致第 26、27 行代码没有匹配的函数,所以调用失败。

如果说有重载关系,那么也是 Base 类的两个 func 构成重载,而 Derive 类的两个 func 构成另外的重载。

至于 Base 类和 Derived 类的 4 个 func 为什么不会构成重载,我们将在VIP教程《C++类继承时的作用域嵌套,破解C++继承的一切秘密!》一节中讲解,届时读者必将有所顿悟。

C++类继承时的作用域嵌套,破解C++继承的一切秘密!

已剪辑自: http://c.biancheng.net/view/vip_2272.html

类其实也是一种作用域,每个类都会定义它自己的作用域,在这个作用域内我们再定义类的成员,这一点已在《类其实也是一种作用域》中讲到。当存在继承关系时,派生类的作用域嵌套在基类的作用域之内,如果一个名字在派生类的作用域内无法找到,编译器会继续到外层的基类作用域中查找该名字的定义。

换句话说,作用域能够彼此包含,被包含(或者说被嵌套)的作用域称为内层作用域(inner scope),包含着别的作用域的作用域称为外层作用域(outer scope)。一旦在外层作用域中声明(或者定义)了某个名字,那么它所嵌套着的所有内层作用域中都能访问这个名字。同时,允许在内层作用域中重新定义外层作用域中已有的名字。

假设 Base 是基类,Derived 是派生类,那么它们的作用域的嵌套关系如下图所示:

img

派生类的作用域位于基类作用域之内这一事实可能有点出人意料,毕竟在我们的代码中派生类和基类的定义是相互分离的。不过也恰恰因为类作用域有这种继承嵌套的关系,所以派生类才能像使用自己的成员一样来使用基类的成员。

一个类作用域嵌套的例子:

#include
using namespace std;
class A{
public:
    void func();
public:
    int n;
};
void A::func(){ cout<<"c.biancheng.net"<

运行结果:
c.biancheng.net
20

本例中,B 继承自 A,C继承自 B,它们作用域的嵌套关系如下图所示:

img

obj 是 C 类的对象,通过 obj 访问成员变量 n 时,在 C 类的作用域中就能够找到了 n 这个名字。虽然 A 类和 B 类都有名字 n,但编译器不会到它们的作用域中查找,所以是不可见的,也即派生类中的 n 遮蔽了基类中的 n。

通过 obj 访问成员函数 func() 时,在 C 类的作用域中没有找到 func 这个名字,编译器继续到 B 类的作用域(外层作用域)中查找,仍然没有找到,再继续到 A 类的作用域中查找,结果就发现了 func 这个名字,于是查找结束,编译器决定调用 A 类作用域中的 func() 函数。

这个过程叫做名字查找(name lookup),也就是在作用域链中寻找与所用名字最匹配的声明(或定义)的过程。

对于成员变量这个过程很好理解,对于成员函数要引起注意,编译器仅仅是根据函数的名字来查找的,不会理会函数的参数。换句话说,一旦内层作用域有同名的函数,不管有几个,编译器都不会再到外层作用域中查找,编译器仅把内层作用域中的这些同名函数作为一组候选函数;这组候选函数就是一组重载函数。

说白了,只有一个作用域内的同名函数才具有重载关系,不同作用域内的同名函数是会造成遮蔽,使得外层函数无效。派生类和基类拥有不同的作用域,所以它们的同名函数不具有重载关系。

我们不妨再来回顾一下上节的例子:

#include
using namespace std;
//基类Base
class Base{
public:
    void func();
    void func(int);
};
void Base::func(){ cout<<"Base::func()"<

虽然 Derived 类和 Base 类都有同名的 func 函数,但它们位于不同的作用域,Derived 类的 func 会遮蔽 Base 类的 func。d 是 Derived 类的对象,调用 func 函数时,编译器会先在 Derived 类中查找“func”这个名字,发现有两个,也即void func(char*)和void func(bool),这就是一组候选函数。

执行到第 26、27 行代码时,在候选函数中没有找到匹配的函数,所以调用失败,这时编译器会抛出错误信息,而不是再到 Base 类中查找同名函数。

C++继承时的对象内存模型

已剪辑自: http://c.biancheng.net/view/vip_2273.html

在《C++对象的内存模型》一节中我们讲解了没有继承时对象内存的分布情况。这时的内存模型很简单,成员变量和成员函数会分开存储:

当存在继承关系时,内存模型会稍微复杂一些。

继承时的内存模型

有继承关系时,派生类的内存模型可以看成是基类成员变量和新增成员变量的总和,而所有成员函数仍然存储在另外一个区域——代码区,由所有对象共享。请看下面的代码:

#include 
using namespace std;
//基类A
class A{
public:
    A(int a, int b);
public:
    void display();
protected:
    int m_a;
    int m_b;
};
A::A(int a, int b): m_a(a), m_b(b){}
void A::display(){
    printf("m_a=%d, m_b=%d\n", m_a, m_b);
}
//派生类B
class B: public A{
public:
    B(int a, int b, int c);
    void display();
protected:
    int m_c;
};
B::B(int a, int b, int c): A(a, b), m_c(c){ }
void B::display(){
    printf("m_a=%d, m_b=%d, m_c=%d\n", m_a, m_b, m_c);
}
int main(){
    A obj_a(99, 10);
    B obj_b(84, 23, 95);
    obj_a.display();
    obj_b.display();
    return 0;
}

obj_a 是基类对象,obj_b 是派生类对象。假设 obj_a 的起始地址为 0X1000,那么它的内存分布如下图所示:

img

假设 obj_b 的起始地址为 0X1100,那么它的内存分布如下图所示:

img

可以发现,基类的成员变量排在前面,派生类的排在后面。

为了让大家理解更加透彻,我们不妨再由 B 类派生出一个 C 类:

//声明并定义派生类C
class C: public B{
public:
    C(char a, int b, int c, int d);
public:
    void display();
private:
    int m_d;
};
C::C(char a, int b, int c, int d): B(a, b, c), m_d(d){ }
void C::display(){
    printf("m_a=%d, m_b=%d, m_c=%d, m_d=%d\n", m_a, m_b, m_c, m_d);
}
//创建C类对象obj_c
C obj_c(84, 23, 95, 60);
obj_c.display();

假设 obj_c 的起始地址为 0X1200,那么它的内存分布如下图所示:

img

成员变量按照派生的层级依次排列,新增成员变量始终在最后。

有成员变量遮蔽时的内存分布

更改上面的 C 类,让它的成员变量遮蔽 A 类和 B 类的成员变量:

//声明并定义派生类C
class C: public B{
public:
    C(char a, int b, int c, int d);
public:
    void display();
private:
    int m_b;  //遮蔽A类的成员变量
    int m_c;  //遮蔽B类的成员变量
    int m_d;  //新增成员变量
};
C::C(char a, int b, int c, int d): B(a, b, c), m_b(b), m_c(c), m_d(d){ }
void C::display(){
    printf("A::m_a=%d, A::m_b=%d, B::m_c=%d\n", m_a, A::m_b, B::m_c);
    printf("C::m_b=%d, C::m_c=%d, C::m_d=%d\n", m_b, m_c, m_d);
}
//创建C类对象obj_c
C obj_c(84, 23, 95, 60);
obj_c.display();

假设 obj_c 的起始地址为 0X1300,那么它的内存分布如下图所示:

img

当基类 A、B 的成员变量被遮蔽时,仍然会留在派生类对象 obj_c 的内存中,C 类新增的成员变量始终排在基类 A、B 的后面。

总结:在派生类的对象模型中,会包含所有基类的成员变量。这种设计方案的优点是访问效率高,能够在派生类对象中直接访问基类变量,无需经过好几层间接计算。

借助指针突破访问权限的限制,访问private、protected属性的成员变量

已剪辑自: http://c.biancheng.net/view/vip_2279.html

我们都知道,C++ 不允许通过对象来访问 private、protected 属性的成员变量,例如:

#include 
using namespace std;
class A{
public:
    A(int a, int b, int c);
private:
    int m_a;
    int m_b;
    int m_c;
};
A::A(int a, int b, int c): m_a(a), m_b(b), m_c(c){ }
int main(){
    A obj(10, 20, 30);
    int a = obj.m_a;  //Compile Error
    A *p = new A(40, 50, 60);
    int b = p->m_b;  //Compile Error
    return 0;
}

这段代码说明了,无论通过对象变量还是对象指针,都不能访问 private 属性的成员变量。

不过 C++ 的这种限制仅仅是语法层面的,通过某种“蹩脚”的方法,我们能够突破访问权限的限制,访问到 private、protected 属性的成员变量,赋予我们这种“特异功能”的,正是强大而又灵活的指针(Pointer)。

使用偏移

在对象的内存模型中,成员变量和对象的开头位置会有一定的距离。以上面的 obj 为例,它的内存模型为:

img

图中假设 obj 对象的起始地址为 0X1000,m_a、m_b、m_c 与对象开头分别相距 0、4、8 个字节,我们将这段距离称为偏移(Offset)。一旦知道了对象的起始地址,再加上偏移就能够求得成员变量的地址,知道了成员变量的地址和类型,也就能够轻而易举地知道它的值。

当通过对象指针访问成员变量时,编译器实际上也是使用这种方式来取得它的值。为了说明问题,我们不妨将上例中成员变量的访问权限改为 public,再来执行第 18 行的语句:

int b = p->m_b;

此时编译器内部会发生类似下面的转换:

int b = (int)( (int)p + sizeof(int) );

p 是对象 obj 的指针,(int)p将指针转换为一个整数,这样才能进行加法运算;sizeof(int)用来计算 m_b 的偏移;(int)p + sizeof(int)得到的就是 m_b 的地址,不过因为此时是int类型,所以还需要强制转换为int *类型;开头的*用来获取地址上的数据。

img

如果通过 p 指针访问 m_a:

int a = p -> m_a;

那么将被转换为下面的形式:

int a = * (int*) ( (int)p + 0 );

经过简化以后为:

int a = (int)p;

突破访问权限的限制

上述的转换过程是编译器自动完成的,当成员变量的访问权限为 private 时,我们也可以手动转换,只要能正确计算偏移即可,这样就突破了访问权限的限制。

修改上例中的代码,借助偏移来访问 private 属性的成员变量:

#include 
using namespace std;
class A{
public:
    A(int a, int b, int c);
private:
    int m_a;
    int m_b;
    int m_c;
};
A::A(int a, int b, int c): m_a(a), m_b(b), m_c(c){ }
int main(){
    A obj(10, 20, 30);
    int a1 = *(int*)&obj;
    int b = *(int*)( (int)&obj + sizeof(int) );
    A *p = new A(40, 50, 60);
    int a2 = *(int*)p;
    int c = *(int*)( (int)p + sizeof(int)*2 );
   
    cout<<"a1="<

运行结果:
a1=10, a2=40, b=20, c=60

前面我们说 C++ 的成员访问权限仅仅是语法层面上的,是指访问权限仅对取成员运算符.->起作用,而无法防止直接通过指针来访问。你可以认为这是指针的强大,也可以认为是 C++ 语言设计的瑕疵。

本节的目的不是为了访问到 private、protected 属性的成员变量,这种“花拳绣腿”没有什么现实的意义,本节主要是让大家明白编译器内部的工作原理,以及指针的灵活运用。

C++将派生类赋值给基类(向上转型)

已剪辑自: http://c.biancheng.net/view/2284.html

在 C/C++ 中经常会发生数据类型的转换,例如将 int 类型的数据赋值给 float 类型的变量时,编译器会先把 int 类型的数据转换为 float 类型再赋值;反过来,float 类型的数据在经过类型转换后也可以赋值给 int 类型的变量。

数据类型转换的前提是,编译器知道如何对数据进行取舍。例如:

int a = 10.9;
printf("%d\n", a);

输出结果为 10,编译器会将小数部分直接丢掉(不是四舍五入)。再如:

float b = 10;
printf("%f\n", b);

输出结果为 10.000000,编译器会自动添加小数部分。

类其实也是一种数据类型,也可以发生数据类型转换,不过这种转换只有在基类和派生类之间才有意义,并且只能将派生类赋值给基类,包括将派生类对象赋值给基类对象、将派生类指针赋值给基类指针、将派生类引用赋值给基类引用,这在 C++ 中称为向上转型(Upcasting)。相应地,将基类赋值给派生类称为向下转型(Downcasting)。

向上转型非常安全,可以由编译器自动完成;向下转型有风险,需要程序员手动干预。本节只介绍向上转型,向下转型将在后续章节介绍。 向上转型和向下转型是面向对象编程的一种通用概念,它们也存在于 JavaC# 等编程语言中。

将派生类对象赋值给基类对象

下面的例子演示了如何将派生类对象赋值给基类对象:

#include 
using namespace std;
//基类
class A{
public:
    A(int a);
public:
    void display();
public:
    int m_a;
};
A::A(int a): m_a(a){ }
void A::display(){
    cout<<"Class A: m_a="<

运行结果:
Class A: m_a=10
Class B: m_a=66, m_b=99
----------------------------
Class A: m_a=66
Class B: m_a=66, m_b=99

本例中 A 是基类, B 是派生类,a、b 分别是它们的对象,由于派生类 B 包含了从基类 A 继承来的成员,因此可以将派生类对象 b 赋值给基类对象 a。通过运行结果也可以发现,赋值后 a 所包含的成员变量的值已经发生了变化。

赋值的本质是将现有的数据写入已分配好的内存中,对象的内存只包含了成员变量,所以对象之间的赋值是成员变量的赋值,成员函数不存在赋值问题。运行结果也有力地证明了这一点,虽然有a=b;这样的赋值过程,但是 a.display() 始终调用的都是 A 类的 display() 函数。换句话说,对象之间的赋值不会影响成员函数,也不会影响 this 指针。

将派生类对象赋值给基类对象时,会舍弃派生类新增的成员,也就是“大材小用”,如下图所示:

img

可以发现,即使将派生类对象赋值给基类对象,基类对象也不会包含派生类的成员,所以依然不同通过基类对象来访问派生类的成员。对于上面的例子,a.m_a 是正确的,但 a.m_b 就是错误的,因为 a 不包含成员 m_b。

这种转换关系是不可逆的,只能用派生类对象给基类对象赋值,而不能用基类对象给派生类对象赋值。理由很简单,基类不包含派生类的成员变量,无法对派生类的成员变量赋值。同理,同一基类的不同派生类对象之间也不能赋值。

要理解这个问题,还得从赋值的本质入手。赋值实际上是向内存填充数据,当数据较多时很好处理,舍弃即可;本例中将 b 赋值给 a 时(执行a=b;语句),成员 m_b 是多余的,会被直接丢掉,所以不会发生赋值错误。但当数据较少时,问题就很棘手,编译器不知道如何填充剩下的内存;如果本例中有b= a;这样的语句,编译器就不知道该如何给变量 m_b 赋值,所以会发生错误。

将派生类指针赋值给基类指针

除了可以将派生类对象赋值给基类对象(对象变量之间的赋值),还可以将派生类指针赋值给基类指针(对象指针之间的赋值)。我们先来看一个多继承的例子,继承关系为:

img

下面的代码实现了这种继承关系:

#include 
using namespace std;
//基类A
class A{
public:
    A(int a);
public:
    void display();
protected:
    int m_a;
};
A::A(int a): m_a(a){ }
void A::display(){
    cout<<"Class A: m_a="<

运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400
-----------------------
pa=0x9b17f8
pb=0x9b17f8
pc=0x9b1800
pd=0x9b17f8

本例中定义了多个对象指针,并尝试将派生类指针赋值给基类指针。与对象变量之间的赋值不同的是,对象指针之间的赋值并没有拷贝对象的成员,也没有修改对象本身的数据,仅仅是改变了指针的指向。

1) 通过基类指针访问派生类的成员

请读者先关注第 68 行代码,我们将派生类指针 pd 赋值给了基类指针 pa,从运行结果可以看出,调用 display() 函数时虽然使用了派生类的成员变量,但是 display() 函数本身却是基类的。也就是说,将派生类指针赋值给基类指针时,通过基类指针只能使用派生类的成员变量,但不能使用派生类的成员函数,这看起来有点不伦不类,究竟是为什么呢?第 71、74 行代码也是类似的情况。

pa 本来是基类 A 的指针,现在指向了派生类 D 的对象,这使得隐式指针 this 发生了变化,也指向了 D 类的对象,所以最终在 display() 内部使用的是 D 类对象的成员变量,相信这一点不难理解。

编译器虽然通过指针的指向来访问成员变量,但是却不通过指针的指向来访问成员函数:编译器通过指针的类型来访问成员函数。对于 pa,它的类型是 A,不管它指向哪个对象,使用的都是 A 类的成员函数,具体原因已在《C++函数编译原理和成员函数的实现》中做了详细讲解。

概括起来说就是:编译器通过指针来访问成员变量,指针指向哪个对象就使用哪个对象的数据;编译器通过指针的类型来访问成员函数,指针属于哪个类的类型就使用哪个类的函数。

2) 赋值后值不一致的情况

本例中我们将最终派生类的指针 pd 分别赋值给了基类指针 pa、pb、pc,按理说它们的值应该相等,都指向同一块内存,但是运行结果却有力地反驳了这种推论,只有 pa、pb、pd 三个指针的值相等,pc 的值比它们都大。也就是说,执行pc = pd;语句后,pc 和 pd 的值并不相等。

这非常出乎我们的意料,按照我们通常的理解,赋值就是将一个变量的值交给另外一个变量,不会出现不相等的情况,究竟是什么导致了 pc 和 pd 不相等呢?我们将在《将派生类指针赋值给基类指针时到底发生了什么?》一节中解开谜底。

将派生类引用赋值给基类引用

引用在本质上是通过指针的方式实现的,这一点已在《引用在本质上是什么,它和指针到底有什么区别》中进行了讲解,既然基类的指针可以指向派生类的对象,那么我们就有理由推断:基类的引用也可以指向派生类的对象,并且它的表现和指针是类似的。

修改上例中 main() 函数内部的代码,用引用取代指针:

int main(){
    D d(4, 40, 400, 4000);
   
    A &ra = d;
    B &rb = d;
    C &rc = d;
   
    ra.display();
    rb.display();
    rc.display();
    return 0;
}

运行结果:
Class A: m_a=4
Class B: m_a=4, m_b=40
Class C: m_c=400

ra、rb、rc 是基类的引用,它们都引用了派生类对象 d,并调用了 display() 函数,从运行结果可以发现,虽然使用了派生类对象的成员变量,但是却没有使用派生类的成员函数,这和指针的表现是一样的。

引用和指针的表现之所以如此类似,是因为引用和指针并没有本质上的区别,引用仅仅是对指针进行了简单封装,读者可以猛击《引用在本质上是什么,它和指针到底有什么区别》一文深入了解。

最后需要注意的是,向上转型后通过基类的对象、指针、引用只能访问从基类继承过去的成员(包括成员变量和成员函数),不能访问派生类新增的成员。

将派生类指针赋值给基类指针时到底发生了什么?

已剪辑自: http://c.biancheng.net/view/2285.html

通过上节最后一个例子我们发现,将派生类的指针赋值给基类的指针后,它们的值有可能相等,也有可能不相等。例如执行pc = pd;语句后,pc 的值为 0x9b1800,pd 的值为 0x9b17f8,它们不相等。

我们通常认为,赋值就是将一个变量的值交给另外一个变量,这种想法虽然没错,但是有一点要注意,就是赋值以前编译器可能会对现有的值进行处理。例如将 double 类型的值赋给 int 类型的变量,编译器会直接抹掉小数部分,导致赋值运算符两边变量的值不相等。请看下面的例子:

#include 
using namespace std;
int main(){
    double pi = 3.14159;
    int n = pi;
    cout<

运行结果:
3.14159, 3

pi 的值是 3.14159,执行int n = pi;后 n 的值变为 3,虽然是赋值,但是 pi 和 n 的值并不相等。

将派生类的指针赋值给基类的指针时也是类似的道理,编译器也可能会在赋值前进行处理。要理解这个问题,首先要清楚 D 类对象的内存模型,如下图所示:

img

首先要明确的一点是,对象的指针必须要指向对象的起始位置。对于 A 类和 B 类来说,它们的子对象的起始地址和 D 类对象一样,所以将 pd 赋值给 pa、pb 时不需要做任何调整,直接传递现有的值即可;而 C 类子对象距离 D 类对象的开头有一定的偏移,将 pd 赋值给 pc 时要加上这个偏移,这样 pc 才能指向 C 类子对象的起始位置。也就是说,执行pc = pd;语句时编译器对 pd 的值进行了调整,才导致 pc、pd 的值不同。

下面的代码演示了将 pd 赋值给 pc 时编译器的调整过程:

pc = (C*)( (int)pd + sizeof(B) );

如果我们把 B、C 类的继承顺序调整一下,让 C 在 B 前面,如下所示:

class D: public C, public B

那么输出结果就会变为:
pa=0x317fc
pb=0x317fc
pc=0x317f8
pd=0x317f8
相信聪明的你能够自行分析出来。

C++多态和虚函数快速入门教程

已剪辑自: http://c.biancheng.net/view/2294.html

在《C++将派生类赋值给基类(向上转型)》一节中讲到,基类的指针也可以指向派生类对象,请看下面的例子:

#include 
using namespace std;
//基类People
class People{
public:
    People(char *name, int age);
    void display();
protected:
    char *m_name;
    int m_age;
};
People::People(char *name, int age): m_name(name), m_age(age){}
void People::display(){
    cout< display();
    p = new Teacher("赵宏佳", 45, 8200);
    p -> display();
    return 0;
}

运行结果:
王志刚今年23岁了,是个无业游民。
赵宏佳今年45岁了,是个无业游民。

我们直观上认为,如果指针指向了派生类对象,那么就应该使用派生类的成员变量和成员函数,这符合人们的思维习惯。但是本例的运行结果却告诉我们,当基类指针 p 指向派生类 Teacher 的对象时,虽然使用了 Teacher 的成员变量,但是却没有使用它的成员函数,导致输出结果不伦不类(赵宏佳本来是一名老师,输出结果却显示人家是个无业游民),不符合我们的预期。

换句话说,通过基类指针只能访问派生类的成员变量,但是不能访问派生类的成员函数。

为了消除这种尴尬,让基类指针能够访问派生类的成员函数,C++ 增加了虚函数(Virtual Function)。使用虚函数非常简单,只需要在函数声明前面增加 virtual 关键字。

更改上面的代码,将 display() 声明为虚函数:

#include 
using namespace std;
//基类People
class People{
public:
    People(char *name, int age);
    virtual void display();  //声明为虚函数
protected:
    char *m_name;
    int m_age;
};
People::People(char *name, int age): m_name(name), m_age(age){}
void People::display(){
    cout< display();
    p = new Teacher("赵宏佳", 45, 8200);
    p -> display();
    return 0;
}

运行结果:
王志刚今年23岁了,是个无业游民。
赵宏佳今年45岁了,是一名教师,每月有8200元的收入。

和前面的例子相比,本例仅仅是在 display() 函数声明前加了一个virtual关键字,将成员函数声明为了虚函数(Virtual Function),这样就可以通过 p 指针调用 Teacher 类的成员函数了,运行结果也证明了这一点(赵宏佳已经是一名老师了,不再是无业游民了)。

有了虚函数,基类指针指向基类对象时就使用基类的成员(包括成员函数和成员变量),指向派生类对象时就使用派生类的成员。换句话说,基类指针可以按照基类的方式来做事,也可以按照派生类的方式来做事,它有多种形态,或者说有多种表现方式,我们将这种现象称为多态(Polymorphism)

上面的代码中,同样是p->display();这条语句,当 p 指向不同的对象时,它执行的操作是不一样的。同一条语句可以执行不同的操作,看起来有不同表现方式,这就是多态。

多态是面向对象编程的主要特征之一,C++中虚函数的唯一用处就是构成多态。

C++提供多态的目的是:可以通过基类指针对所有派生类(包括直接派生和间接派生)的成员变量和成员函数进行“全方位”的访问,尤其是成员函数。如果没有多态,我们只能访问成员变量。

前面我们说过,通过指针调用普通的成员函数时会根据指针的类型(通过哪个类定义的指针)来判断调用哪个类的成员函数,但是通过本节的分析可以发现,这种说法并不适用于虚函数,虚函数是根据指针的指向来调用的,指针指向哪个类的对象就调用哪个类的虚函数。

但是话又说回来,对象的内存模型是非常干净的,没有包含任何成员函数的信息,编译器究竟是根据什么找到了成员函数呢?我们将在《C++虚函数表精讲教程,直戳多态的实现机制》一节中给出答案。

借助引用也可以实现多态

引用在本质上是通过指针的方式实现的,这一点已在《C++引用在本质上是什么,它和指针到底有什么区别?》中进行了讲解,既然借助指针可以实现多态,那么我们就有理由推断:借助引用也可以实现多态。

修改上例中 main() 函数内部的代码,用引用取代指针:

int main(){
    People p("王志刚", 23);
    Teacher t("赵宏佳", 45, 8200);
   
    People &rp = p;
    People &rt = t;
   
    rp.display();
    rt.display();
    return 0;
}

运行结果:
王志刚今年23岁了,是个无业游民。
赵宏佳今年45岁了,是一名教师,每月有8200元的收入。

由于引用类似于常量,只能在定义的同时初始化,并且以后也要从一而终,不能再引用其他数据,所以本例中必须要定义两个引用变量,一个用来引用基类对象,一个用来引用派生类对象。从运行结果可以看出,当基类的引用指代基类对象时,调用的是基类的成员,而指代派生类对象时,调用的是派生类的成员。

不过引用不像指针灵活,指针可以随时改变指向,而引用只能指代固定的对象,在多态性方面缺乏表现力,所以以后我们再谈及多态时一般是说指针。本例的主要目的是让读者知道,除了指针,引用也可以实现多态。

多态的用途

通过上面的例子读者可能还未发现多态的用途,不过确实也是,多态在小项目中鲜有有用武之地。

接下来的例子中,我们假设你正在玩一款军事游戏,敌人突然发动了地面战争,于是你命令陆军、空军及其所有现役装备进入作战状态。具体的代码如下所示:

#include 
using namespace std;
//军队
class Troops{
public:
    virtual void fight(){ cout<<"Strike back!"<fight();
    //陆军
    p = new Army;
    p ->fight();
    p = new _99A;
    p -> fight();
    p = new WZ_10;
    p -> fight();
    p = new CJ_10;
    p -> fight();
    //空军
    p = new AirForce;
    p -> fight();
    p = new J_20;
    p -> fight();
    p = new CH_5;
    p -> fight();
    p = new H_6K;
    p -> fight();
    return 0;
}

运行结果:
Strike back!
–Army is fighting!
----99A(Tank) is fighting!
----WZ-10(Helicopter) is fighting!
----CJ-10(Missile) is fighting!
–AirForce is fighting!
----J-20(Fighter Plane) is fighting!
----CH-5(UAV) is fighting!
----H-6K(Bomber) is fighting!

这个例子中的派生类比较多,如果不使用多态,那么就需要定义多个指针变量,很容易造成混乱;而有了多态,只需要一个指针变量 p 就可以调用所有派生类的虚函数。

从这个例子中也可以发现,对于具有复杂继承关系的大中型程序,多态可以增加其灵活性,让代码更具有表现力。

C++虚函数注意事项以及构成多态的条件

已剪辑自: http://c.biancheng.net/view/2296.html

C++ 虚函数对于多态具有决定性的作用,有虚函数才能构成多态。上节《C++多态和虚函数快速入门教程》我们已经介绍了虚函数的概念,这节我们来重点说一下虚函数的注意事项。

  1. 只需要在虚函数的声明处加上 virtual 关键字,函数定义处可以加也可以不加。

  2. 为了方便,你可以只将基类中的函数声明为虚函数,这样所有派生类中具有遮蔽关系的同名函数都将自动成为虚函数。关于名字遮蔽已在《C++继承时的名字遮蔽》一节中进行了讲解。

  3. 当在基类中定义了虚函数时,如果派生类没有定义新的函数来遮蔽此函数,那么将使用基类的虚函数。

  4. 只有派生类的虚函数覆盖基类的虚函数(函数原型相同)才能构成多态(通过基类指针访问派生类函数)。例如基类虚函数的原型为virtual void func();,派生类虚函数的原型为virtual void func(int);,那么当基类指针 p 指向派生类对象时,语句p -> func(100);将会出错,而语句p -> func();将调用基类的函数。

  5. 构造函数不能是虚函数。对于基类的构造函数,它仅仅是在派生类构造函数中被调用,这种机制不同于继承。也就是说,派生类不继承基类的构造函数,将构造函数声明为虚函数没有什么意义。

  6. 析构函数可以声明为虚函数,而且有时候必须要声明为虚函数,这点我们将在下节中讲解。

构成多态的条件

站在“学院派”的角度讲,封装、继承和多态是面向对象的三大特征,封装、继承分别在《C++类成员的访问权限以及类的封装》《C++继承和派生简明教程》中进行了讲解,而多态是指通过基类的指针既可以访问基类的成员,也可以访问派生类的成员。

下面是构成多态的条件:

下面的例子对各种混乱情形进行了演示:

#include 
using namespace std;
//基类Base
class Base{
public:
    virtual void func();
    virtual void func(int);
};
void Base::func(){
    cout<<"void Base::func()"< func();  //输出void Derived::func()
    p -> func(10);  //输出void Base::func(int)
    p -> func("http://c.biancheng.net");  //compile error
    return 0;
}

在基类 Base 中我们将void func()声明为虚函数,这样派生类 Derived 中的void func()就会自动成为虚函数。p 是基类 Base 的指针,但是指向了派生类 Derived 的对象。

语句p -> func();调用的是派生类的虚函数,构成了多态。

语句p -> func(10);调用的是基类的虚函数,因为派生类中没有函数覆盖它。

语句p -> func("http://c.biancheng.net");出现编译错误,因为通过基类的指针只能访问从基类继承过去的成员,不能访问派生类新增的成员。

什么时候声明虚函数

首先看成员函数所在的类是否会作为基类。然后看成员函数在类的继承后有无可能被更改功能,如果希望更改其功能的,一般应该将它声明为虚函数。如果成员函数在类被继承后功能不需修改,或派生类用不到该函数,则不要把它声明为虚函数。

  • 相关阅读:
    C# wpf 实现截屏框热键截屏功能
    给出三个整数,判断大小
    智能硬件开发怎么做?机智云全套自助式开发工具助力高效开发
    leetcode做题笔记2342. 数位和相等数对的最大和
    Windows服务器高物理内存占用问题排察【伴随黑客攻击】
    【软件测试】JUnit详解
    Greenplum数据库数据分片策略Hash分布——执行器行为
    2023年中国肠胃炎用药行业现状分析:随着老龄化进程明显加速,市场规模同比增长7%[图]
    后端程序员入门react笔记(七)- React路由
    开源版商城源码V2.0【小程序 + H5+ 公众号 + APP】
  • 原文地址:https://blog.csdn.net/qq_41854911/article/details/128019788