在某些情况下,需要处理不同分辨率的图像。我们需要创建不同分辨率的图像,最高分辨率的在最下面,最低分辨率的在最上面,看起来像金字塔。
高斯金字塔中的最高级别(低分辨率)是通过移除低级别(高分辨率)图像中的连续行和列而形成的。较高级别的每个像素由高斯权重的基础级别中的5个像素贡献而成。 M ∗ N M*N M∗N 的图像变成了 ( M / 2 ) ∗ ( N / 2 ) (M/2)*(N/2) (M/2)∗(N/2) 。
import cv2
img = cv2.imread('messi5.jpg', 1)
lower1 = cv2.pyrDown(img)
lower2 = cv2.pyrDown(lower1)
lower3 = cv2.pyrDown(lower2)
lower4 = cv2.pyrDown(lower3)
cv2.imshow('src', img)
cv2.imshow('down1', lower1)
cv2.imshow('down2', lower2)
cv2.imshow('down3', lower3)
cv2.imshow('down4', lower4)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
img = cv2.imread('lena-small.jpg', 1)
big1 = cv2.pyrUp(img)
big2 = cv2.pyrUp(big1)
cv2.imshow('src', img)
cv2.imshow('up1', big1)
cv2.imshow('up2', big2)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np,sys
A = cv2.imread('apple.jpg')
B = cv2.imread('orange.jpg')
# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in range(6):
G = cv2.pyrDown(G)
gpA.append(G)
# generate Gaussian pyramid for B
G = B.copy()
gpB = [G]
for i in range(6):
G = cv2.pyrDown(G)
gpB.append(G)
# generate Laplacian Pyramid for A
lpA = [gpA[5]]
for i in range(5,0,-1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i-1],GE)
lpA.append(L)
# generate Laplacian Pyramid for B
lpB = [gpB[5]]
for i in range(5,0,-1):
GE = cv2.pyrUp(gpB[i])
L = cv2.subtract(gpB[i-1],GE)
lpB.append(L)
# Now add left and right halves of images in each level
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = np.hstack((la[:,0:cols//2], lb[:,cols//2:]))
LS.append(ls)
# now reconstruct
ls_ = LS[0]
for i in range(1,6):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
# image with direct connecting each half
real = np.hstack((A[:,:cols//2],B[:,cols//2:]))
# cv2.imwrite('Pyramid_blending2.jpg',ls_)
# cv2.imwrite('Direct_blending.jpg',real)
cv2.imshow("apple", A)
cv2.imshow("orange", B)
cv2.imshow("Pyramid_blending", ls_)
cv2.imshow("Direct_blending", real)
cv2.waitKey(0)
cv2.destroyAllWindows()
void cv::pyrDown ( InputArray src,
OutputArray dst,
const Size & dstsize = Size(),
int borderType = BORDER_DEFAULT
);
cv2.pyrDown( src[, dst[, dstsize[, borderType]]] ) -> dst
图像模糊后下采样。
默认情况下,输出图像的尺寸是通过输入图像来计算的。但是任何情况下,得满足 ∣ d s t . w i d t h ∗ 2 − s r c . w i d t h ∣ ≤ 2 |dst.width*2-src.width|≤2 ∣dst.width∗2−src.width∣≤2, ∣ d s t . h e i g h t ∗ 2 − s r c . h e i g h t ∣ ≤ 2 |dst.height*2-src.height|≤2 ∣dst.height∗2−src.height∣≤2
在下采样前需要先进行高斯模糊,
1
256
[
1
4
6
4
1
4
16
24
16
4
6
24
36
24
6
4
16
24
16
4
1
4
6
4
1
]
\frac{1}{256}
- src: 输入图像
- dst: 输出图像
- dstsize: 输出图像的尺寸
- borderType: 扩边类型,不支持
BORDER_CONSTANT
void cv::pyrUp ( InputArray src,
OutputArray dst,
const Size & dstsize = Size(),
int borderType = BORDER_DEFAULT
);
cv2.pyrUp( src[, dst[, dstsize[, borderType]]] ) -> dst
图像上采样后高斯模糊
- src: 输入图像
- dst: 输出图像
- dstsize: 输出图像的尺寸
- borderType: 扩边类型,不支持
BORDER_CONSTANT