• 基于Springboot搭建java项目(十六)——Kafka的简介


    kafka官网:http://kafka.apache.org/

    参考文献:大白话 kafka 架构原理 (qq.com)

    一、kafka简介

    Kafka最初由Linkedin公司开发,是一个分布式的、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常用于web/nginx日志、访问日志、消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

    二、kafka的特性

    • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒;
    • 可扩展性:kafka集群支持热扩展;
    • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止丢失;
    • 容错性:允许集群中的节点失败(若分区副本数量为n,则允许n-1个节点失败);
    • 高并发:单机可支持数千个客户端同时读写;

    三、kafka的应用场景

    • 日志收集:一个公司可以用Kafka收集各种服务的log,通过kafka以统一接口开放给各种消费端,例如hadoop、Hbase、Solr等。
    • 消息系统:解耦生产者和消费者、缓存消息等。
    • 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索记录、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
    • 运营指标:Kafka也经常用来记录运营监控数据。
    • 流式处理

    四、kafka架构

    下面是一个kafka的架构图,

    图片

    整体来看,kafka架构中包含四大组件:生产者、消费者、kafka集群、zookeeper集群。对照上面的结构图,我们先来搞清楚几个很重要的术语,(看图!对照图理解~)

    1、broker

    kafka 集群包含一个或多个服务器,每个服务器节点称为一个broker。

    2、topic

    每条发布到kafka集群的消息都有一个类别,这个类别称为topic,其实就是将消息按照topic来分类,topic就是逻辑上的分类,同一个topic的数据既可以在同一个broker上也可以在不同的broker结点上。

    3、partition

    分区,每个topic被物理划分为一个或多个分区,每个分区在物理上对应一个文件夹,该文件夹里面存储了这个分区的所有消息和索引文件。在创建topic时可指定parition数量,生产者将消息发送到topic时,消息会根据 分区策略 追加到分区文件的末尾,属于顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证)。

    图片

    上面提到了分区策略,所谓分区策略就是决定生产者将消息发送到哪个分区的算法。Kafka 为我们提供了默认的分区策略,同时它也支持自定义分区策略。kafka允许为每条消息设置一个key,一旦消息被定义了 Key,那么就可以保证同一个 Key 的所有消息都进入到相同的分区,这种策略属于自定义策略的一种,被称作"按消息key保存策略",或Key-ordering 策略。

    同一主题的多个分区可以部署在多个机器上,以此来实现 kafka 的伸缩性。同一partition中的数据是有序的,但topic下的多个partition之间在消费数据时不能保证有序性,在需要严格保证消息顺序消费的场景下,可以将partition数设为1,但这种做法的缺点是降低了吞吐,一般来说,只需要保证每个分区的有序性,再对消息设置key来保证相同key的消息落入同一分区,就可以满足绝大多数的应用。

    4、offset

    partition中的每条消息都被标记了一个序号,这个序号表示消息在partition中的偏移量,称为offset,每一条消息在partition都有唯一的offset,消息者通过指定offset来指定要消费的消息。

    正常情况下,消费者在消费完一条消息后会递增offset,准备去消费下一条消息,但也可以将offset设成一个较小的值,重新消费一些消费过的消息,可见offset是由consumer控制的,consumer想消费哪一条消息就消费哪一条消息,所以kafka broker是无状态的,它不需要标记哪些消息被消费过。

    5、producer

    生产者,生产者发送消息到指定的topic下,消息再根据分配规则append到某个partition的末尾。

    6、consumer

    消费者,消费者从topic中消费数据。

    7、consumer group

    消费者组,每个consumer属于一个特定的consumer group,可为每个consumer指定consumer group,若不指定则属于默认的group。

    同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。这也是kafka用来实现一个topic消息的广播和单播的手段,如果需要实现广播,一个consumer group内只放一个消费者即可,要实现单播,将所有的消费者放到同一个consumer group即可。

    用consumer group还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。

    8、leader

    每个partition有多个副本,其中有且仅有一个作为leader,leader会负责所有的客户端读写操作。

    9、follower

    follower不对外提供服务,只与leader保持数据同步,如果leader失效,则选举一个follower来充当新的leader。当follower与leader挂掉、卡住或者同步太慢,leader会把这个follower从ISR列表中删除,重新创建一个follower。

    10、rebalance

    同一个consumer group下的多个消费者互相协调消费工作,我们这样想,一个topic分为多个分区,一个consumer group里面的所有消费者合作,一起去消费所订阅的某个topic下的所有分区(每个消费者消费部分分区),kafka会将该topic下的所有分区均匀的分配给consumer group下的每个消费者,如下图,

    图片

    rebalance表示"重平衡",consumer group内某个消费者挂掉后,其他消费者自动重新分配订阅主题分区的过程,是 Kafka 消费者端实现高可用的重要手段。如下图Consumer Group A中的C2挂掉,C1会接收P1和P2,以达到重新平衡。同样的,当有新消费者加入consumer group,也会触发重平衡操作。

    五、对kafka架构的几点解释

    • 一个典型的kafka集群中包含若干producer,若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干consumer group,以及一个zookeeper集群。kafka通过zookeeper协调管理kafka集群,选举分区leader,以及在consumer group发生变化时进行rebalance。

    • kafka的topic被划分为一个或多个分区,多个分区可以分布在一个或多个broker节点上,同时为了故障容错,每个分区都会复制多个副本,分别位于不同的broker节点,这些分区副本中(不管是leader还是follower都称为分区副本),一个分区副本会作为leader,其余的分区副本作为follower。其中leader负责所有的客户端读写操作,follower不对外提供服务,仅仅从leader上同步数据,当leader出现故障时,其中的一个follower会顶替成为leader,继续对外提供服务。

    • 对于传统的MQ而言,已经被消费的消息会从队列中删除,但在Kafka中被消费的消息也不会立马删除,在kafka的server.propertise配置文件中定义了数据的保存时间,当文件到设定的保存时间时才会删除,

      # 数据的保存时间(单位:小时,默认为7天)

      log.retention.hours=168

      因为Kafka读取消息的时间复杂度为O(1),与文件大小无关,所以这里删除过期文件与提高Kafka性能并没有关系,所以选择怎样的删除策略应该考虑磁盘以及具体的需求。

    • 点对点模式 VS 发布订阅模式

      传统的消息系统中,有两种主要的消息传递模式:点对点模式、发布订阅模式。

      ①点对点模式

      生产者发送消息到queue中,queue支持存在多个消费者,但是对一个消息而言,只可以被一个消费者消费,并且在点对点模式中,已经消费过的消息会从queue中删除不再存储。

      ②发布订阅模式

      生产者将消息发布到topic中,topic可以被多个消费者订阅,且发布到topic的消息会被所有订阅者消费。而kafka就是一种发布订阅模式。

    • 消费端 pull 和 push

      ① push方式:由消息中间件主动地将消息推送给消费者;

      优点:优点是不需要消费者额外开启线程监控中间件,节省开销。

      缺点:无法适应消费速率不相同的消费者。因为消息的发送速率是broker决定的,而消

      费者的处理速度又不尽相同,所以容易造成部分消费者空闲,部分消费者堆积,造成缓

      冲区溢出。

      ② pull方式:由消费者主动向消息中间件拉取消息;

      优点:消费端可以按处理能力进行拉取;

      缺点:消费端需要另开线程监控中间件,有性能开销;

      对于Kafka而言,pull模式更合适。pull模式可简化broker的设计,Consumer可自主控制消费消息的速率,同时Consumer可以自己控制消费方式,既可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

    六、kafka和rabbitMQ对比

    对比项RabbitMQKafka
    开发语言erlangscala,Java
    架构模型① 遵循AMQP;② 生产者、消费者、broker。③ broker由exchange、binding、queue组成;④ consumer消费位置由broker通过确认机制保存;① 不遵循AMQP;② 生产者、消费者、kafka集群、zookeeper集群;③ kafka集群由多个broker节点组成,消息按照topic分类,每个topic又划分为多个partition;④ broker无状态,offset由消费者指定;
    可靠性RabbitMQ可靠性更好,支持事务,支持消息确认机制
    高可用采用镜像队列,即主从模式,数据是异步同步的,当消息过来,主从全部写完后,回ack,这样保障了数据的一致性。每个分区都有一个或多个副本,这些副本保存在不同的broker上,其中有且仅有一个分区副本作为leader,其余的作为follower,当leader不可用时,会选举follower作为新leader继续提供服务。只有leader提供读写服务,follower从leader同步拉取数据然后备份。
    吞吐量kafka更高
    是否支持事务支持不支持
    负载均衡需要外部支持才能实现(如:loadbalancer)kafka利用zk和分区机制实现负载均衡
    是否支持消费者Push不支持支持
    是否支持消费者Pull支持支持

  • 相关阅读:
    如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
    linux 文件意外退出后,利用swp文件恢复未保存的版本。
    Typescript 综合笔记:解读一个github中的React 网页
    JavaDS —— 单链表 与 LinkedList
    PyQT动态加载ui文件时,如何继承QMainWindow类
    奇安信 测试|测试开发 面试真题|面经 汇总
    【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)
    MySQL—索引—基础语法
    Windows Server 2019 激活
    JavaScript 运行时比较: Node.js、 Deno 和 Bun
  • 原文地址:https://blog.csdn.net/m0_46616045/article/details/127943082