两个集群配置完全相同,具体配置信息如下:
集群规模:3 FE + 89 BE
BE 节点 CPU: Intel (R) Xeon (R) Silver 4216 CPU @ 2.10GHz 16 核 32 线程 × 2
BE 节点内存:256GB
BE 节点磁盘:7.3TB × 12 HDD
在该测试场景中,我们选取了小米 A/B 实验场景中 7 个典型的查询 Case,针对每一个查询 Case,我们将扫描的数据时间范围分别限制为 1 天、7 天和 20 天进行查询测试,其中单日分区数据量级大约为 31 亿(数据量大约 2 TB),测试结果如图所示:
根据以上小米 A/B 实验场景下的单 SQL 串行查询测试结果所示,Doris 1.1.2 版本相比小米线上 Doris 0.13 版本至少有 3~5 倍的性能提升,效果显著,提升效果远高于预期。
在并发测试中,我们将小米 A/B 实验场景的查询 SQL 按照正常的业务并发分别提交到 Doris 1.1.2 测试集群和小米线上 Doris 0.13 集群,对比观察两个集群的状态和查询延迟。测试结果为,在完全相同的机器规模、机器配置和查询场景下,Doris 1.1.2 版本的查询延迟相比线上 Doris 0.13 版本整体上升了 1 倍,查询性能下降非常明显,另外,Doris 1.1.2 版本稳定性方面也存在比较严重的问题,查询过程中会有大量的查询报错。Dori