今天带来论文GLM: General Language Model Pretraining with Autoregressive Blank Infilling的笔记。论文中文标题为 通用语言模型预训练与自回归填空。
有很多不同类型的预训练架构,包括自编码模型(BERT、RoBERTa、ALBERT)、自回归模型(GPT系列)以及编码器-解码器模型(T5、MASS、BART、PALM)。然而,没有任何预训练框架能够在自然语言理解(NLU)、无条件生成和有条件生成这三个主要类别的所有任务中表现最佳。
作者提出了基于自回归填空的通用语言模型(GLM)来应对这一挑战。
GLM通过添加二维位置编码改进填空预训练,并允许以任意顺序预测文本片段(span),在NLU任务上相比BERT和T5取得了性能提升。同时,通过改变文本片段的数量和长度,GLM可以针对不同类型的任务进行预训练。在跨NLU、有条件和无条件生成的广泛任务范围内,GLM相比具有相同模型大小和数据的BERT、T5和GPT,在性能上表现更好。
通常,现存的预训练框架可以分成三类:自回归、自编码和编码器-解码器。
自回归模型,如GPT,学习自左向右的语言模型,成功应用在文本生成和扩容到十亿参数级别时的少样本学习能力。但其有一个本质缺点,即这种单向的注意力机制无法在NLU任务中完整捕获上下文信息。
自编码模型,如BERT,通过去噪(denoising)目标(MLM)学习双向上下文编码器。该编码器产生的上下文表示可以适用于NLU任务,但无法直接用于文本生成。
编码器-解码器模型也在编码器上采用双向注意力,在解码器上