1、Stereo R-CNN based 3D Object Detection for Autonomous Driving
作者:Peiliang Li, Xiaozhi Chen, Shaojie Shen
论文链接:https://arxiv.org/abs/1902.09738
解读:Stereo 3D Object Detection - 知乎
2、Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
作者:Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, Silvio Savarese
论文链接:https://arxiv.org/abs/1902.09630
论文解读:CVPR2019 | 目标检测新文:Generalized Intersection over Union
3、ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 作者:Fabian Manhardt, Wadim Kehl, Adrien Gaidon
论文链接:https://arxiv.org/abs/1812.02781
4、Bi-Directional Cascade Network for Perceptual Edge Detection
作者:Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, Tiejun Huang
论文链接:https://arxiv.org/abs/1902.10903
Github源码:https://github.com/pkuCactus/BDCN
5、RepMet: Representative-based metric learning for classification and one-shot object detection
作者:Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz, Amit Aides, Rogerio Feris, Raja Giryes, Alex M. Bronstein
论文链接:https://arxiv.org/abs/1806.04728
6、Region Proposal by Guided Anchoring
作者:Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, Dahua Lin
论文链接:https://arxiv.org/abs/1901.03278
论文解读:港中大-商汤联合实验室等提出:Guided Anchoring: 物体检测器也能自己学 Anchor
Github链接:GitHub - open-mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark
7、Less is More: Learning Highlight Detection from Video Duration
作者:Bo Xiong, Yannis Kalantidis, Deepti Ghadiyaram, Kristen Grauman
论文链接:https://arxiv.org/abs/1903.00859
8、AIRD: Adversarial Learning Framework for Image Repurposing Detection
作者:Ayush Jaiswal, Yue Wu, Wael AbdAlmageed, Iacopo Masi, Premkumar Natarajan
论文链接:https://arxiv.org/abs/1903.00788
9、Feature Selective Anchor-Free Module for Single-Shot Object Detection
作者:Chenchen Zhu, Yihui He, Marios Savvides
论文链接:https://arxiv.org/abs/1903.00621
论文解读:CVPR2019 | CMU提出Single-Shot目标检测最强算法:FSAF
一作直播:CVPR2019 专题直播 | CMU 诸宸辰:基于 Anchor-free 特征选择模块的单阶目标检测
10、Learning Attraction Field Representation for Robust Line Segment Detection
作者:Nan Xue, Song Bai, Fudong Wang, Gui-Song Xia, Tianfu Wu, Liangpei Zhang
论文链接:https://arxiv.org/abs/1812.02122
代码链接:https://github.com/cherubicXN/afm_cvpr2019
11、Latent Space Autoregression for Novelty Detection
作者:Davide Abati, Angelo Porrello, Simone Calderara, Rita Cucchiara
论文链接:https://arxiv.org/abs/1807.01653
代码链接: GitHub - aimagelab/novelty-detection: Latent space autoregression for novelty detection.
12、Strong-Weak Distribution Alignment for Adaptive Object Detection
作者:Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Saenko
论文链接:https://arxiv.org/abs/1812.04798
13、Few-shot Adaptive Faster R-CNN
作者:Tao Wang, Xiaopeng Zhang, Li Yuan, Jiashi Feng
论文链接:https://arxiv.org/abs/1903.09372
14、Attention Based Glaucoma Detection: A Large-scale Database and CNN Model
作者:Liu Li, Mai Xu, Xiaofei Wang, Lai Jiang, Hanruo Liu
论文链接:https://arxiv.org/abs/1903.10831
15、Bounding Box Regression with Uncertainty for Accurate Object Detection(目标检测边界框回归损失算法)
作者:Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, Xiangyu Zhang
论文链接:https://arxiv.org/abs/1809.08545
代码链接:https://github.com/yihui-he/KL-Loss
解读:CMU和旷视科技开源:KL-Loss目标检测边界框回归新算法(CVPR2019)
16、Precise Detection in Densely Packed Scenes
作者:Eran Goldman , Roei Herzig, Aviv Eisenschtat, Jacob Goldberger, Tal Hassner
论文链接:https://arxiv.org/abs/1904.00853
17、Activity Driven Weakly Supervised Object Detection
作者:Zhenheng Yang, Dhruv Mahajan, Deepti Ghadiyaram, Ram Nevatia, Vignesh Ramanathan
论文链接:https://arxiv.org/pdf/1904.01665.pdf
18、Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction
作者:Jason Ku, Alex D. Pon, Steven L. Waslander
论文链接:https://arxiv.org/pdf/1904.01690.pdf
19、Libra R-CNN: Towards Balanced Learning for Object Detection
作者:Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, Dahua Lin
论文链接:https://arxiv.org/abs/1904.02701
解读:浙大和商汤等提出:Libra RCNN目标检测新算法(特征融合),CVPR2019
20、Moving Object Detection under Discontinuous Change in Illumination Using Tensor Low-Rank and Invariant Sparse Decomposition
作者:Moein Shakeri, Hong Zhang
论文链接:https://arxiv.org/abs/1904.03175
21、Towards Universal Object Detection by Domain Attention
作者:Xudong Wang, Zhaowei Cai, Dashan Gao, Nuno Vasconcelos
论文链接:https://arxiv.org/abs/1904.04402
项目链接:Universal Object Detection Benchmark
22、NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
作者:Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, Quoc V. Le
论文链接:https://arxiv.org/abs/1904.07392
23、Deep Anomaly Detection for Generalized Face Anti-Spoofing
作者:Daniel Pérez-Cabo, David Jiménez-Cabello, Artur Costa-Pazo, Roberto J. López-Sastre
论文链接:https://arxiv.org/abs/1904.08241
24、Cascaded Partial Decoder for Fast and Accurate Salient Object Detection
作者:Zhe Wu, Li Su, Qingming Huang
论文链接:https://arxiv.org/abs/1904.08739
25、A Simple Pooling-Based Design for Real-Time Salient Object Detection
作者:Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Jiashi Feng, Jianmin Jiang
论文链接:https://arxiv.org/abs/1904.09569
源码链接:PoolNet+: Exploring the Potential of Pooling for Salient Object Detection – 程明明个人主页
26、CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection
作者:Lu Zhang; Huchuan Lu ; Zhe Lin ; Jianming Zhang; You He
论文链接:https://drive.google.com/open?id=1JcZMHBXEX-7AR1P010OXg_wCCC5HukeZ (需要申请)
源码链接:GitHub - zhangludl/code-and-dataset-for-CapSal: This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.
27、Deep Fitting Degree Scoring Network for Monocular 3D Object Detection
作者:Lijie Liu1, Jiwen Lu, Chunjing Xu, Qi Tian, Jie Zhou
论文链接:https://arxiv.org/pdf/1904.12681.pdf
28、A Mutual Learning Method for Salient Object Detection with intertwined Multi-Supervision
作者:Runmin Wu, Mengyang Feng, Wenlong Guan, Dong Wang, Huchuan Lu, Errui Ding
论文链接:待定
源码链接:https://github.com/JosephineRabbit/MLMSNet
29、ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch(Oral)
作者:Rui Zhu, Shifeng Zhang, Xiaobo Wang, Longyin Wen, Hailin Shi, Liefeng Bo, Tao Mei
论文链接:https://arxiv.org/abs/1810.08425v3
源码链接:GitHub - KimSoybean/ScratchDet: The code and models for paper: "ScratchDet: Exploring to Train Single-Shot Object Detectors from Scratch"