• 两个点的距离


    两个点的距离
    难度:白银
    时间限制:1秒
    巴占用内存:64M
    给定笛卡尔平面上两个点的坐标,求它们之间的距离向上舍入为最接近的整数。
    格式
    输入格式:输入整型,空格分隔
    输出格式:输出整型

     

    1. #include
    2. using namespace std;
    3. int main(){
    4. int x1,y1,x2,y2;
    5. cin>>x1>>y1>>x2>>y2;
    6. int ans = pow((x1-x2),2)+pow((y1-y2),2);
    7. int i = sqrt(ans);
    8. if(i*i == ans){
    9. cout <
    10. }
    11. else cout <1;
    12. return 0;
    13. }

    坐标系简介

    编辑 播报

    笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。 相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。需要指出的是,请将数学中的笛卡尔坐标系与电影《异次元杀阵》中的笛卡尔坐标相区分,电影中的定义与数学中定义有出入,请勿混淆。

    二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。

    二维坐标系

    编辑 播报

    图1

    二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为 x-轴和 y-轴;两个坐标轴的相交点,称为原点,通常标记为 O ,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为 xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(图1),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。

    为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是 刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出 离原点的负值整数距离。称 x-轴刻画的数值为 x-坐标,又称横坐标,称 y-轴刻画的数值为 y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标 和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为(x,y)。

    任何一个点 P 在平面的位置,可以用直角坐标来独特表达。只要从点 P画一条垂直于 x-轴的直线。从这条直线与 x-轴的相交点,可以找到点 P 的 x-坐标。同样地,可以找到点 P 的 y-坐标。这样,我们可以得到点 P 的直角坐标。

    直角坐标系也可以推广至三维空间(3 dimension)与高维空间 (higher dimension) 。

    直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为Ⅰ,Ⅱ,Ⅲ,Ⅳ。依照惯例,象限Ⅰ的两个坐标都是正值;象限Ⅱ的 x-坐标是负值, y-坐标是正值;象限Ⅲ的两个坐标都是负值的;象限Ⅳ的 x-坐标是正值, y-坐标是负值。所以,象限的编号是按照逆时针方向,从象限Ⅰ编到象限Ⅳ。

  • 相关阅读:
    Leetcode第21题:合并两个有序链表
    element el-popover自动关闭问题
    Roson的Qt之旅 #121 Qt信号和槽详细介绍
    简单的Hystrix熔断
    C语言中宏定义的盲区有哪些?
    工业数据与数据采集应用如何在ARM+FPGA异核架构的米尔MYC-JX8MMA7核心板应用
    想学设计模式、想搞架构设计,先学学 UML 系统建模吧
    关于动态注册组件的问题
    电机控制算法
    Docker容器化技术(从零学会Docker)
  • 原文地址:https://blog.csdn.net/m0_62574889/article/details/127701521