说明:
Example of application of ISAM2 for GPS-aided navigation on the KITTI
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
外参数、噪声
struct KittiCalibration {
double body_ptx;
double body_pty;
double body_ptz;
double body_prx;
double body_pry;
double body_prz;
double accelerometer_sigma;
double gyroscope_sigma;
double integration_sigma;
double accelerometer_bias_sigma;
double gyroscope_bias_sigma;
double average_delta_t;
};
struct ImuMeasurement {
double time;
double dt;
Vector3 accelerometer;
Vector3 gyroscope; // omega
};
struct GpsMeasurement {
double time;
Vector3 position; // x,y,z
};
void loadKittiData(KittiCalibration& kitti_calibration,
vector<ImuMeasurement>& imu_measurements,
vector<GpsMeasurement>& gps_measurements)
{
}
KittiCalibration kitti_calibration;
vector<ImuMeasurement> imu_measurements;
vector<GpsMeasurement> gps_measurements;
loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
body系 imu系的位姿变换
Vector6 BodyP =
(Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty,
kitti_calibration.body_ptz, kitti_calibration.body_prx,
kitti_calibration.body_pry, kitti_calibration.body_prz)
.finished();
auto body_T_imu = Pose3::Expmap(BodyP);
if (!body_T_imu.equals(Pose3(), 1e-5)) {
printf(
"Currently only support IMUinBody is identity, i.e. IMU and body frame "
"are the same");
exit(-1);
}
// Configure different variables
// double t_offset = gps_measurements[0].time;
size_t first_gps_pose = 1;
size_t gps_skip = 10; // Skip this many GPS measurements each time
double g = 9.8;
auto w_coriolis = Vector3::Zero(); // zero vector
c o r i o l i s f o r c e coriolis\ force coriolis force
// Configure noise models
auto noise_model_gps = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0 / 0.07))
.finished());
// Set initial conditions for the estimated trajectory
// initial pose is the reference frame (navigation frame)
auto current_pose_global =
Pose3(Rot3(), gps_measurements[first_gps_pose].position);
// the vehicle is stationary at the beginning at position 0,0,0
Vector3 current_velocity_global = Vector3::Zero();
auto current_bias = imuBias::ConstantBias(); // init with zero bias
auto sigma_init_x = noiseModel::Diagonal::Precisions(
(Vector6() << Vector3::Constant(0), Vector3::Constant(1.0)).finished());
auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
auto sigma_init_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(0.100), Vector3::Constant(5.00e-05))
.finished());
// Set IMU preintegration parameters
Matrix33 measured_acc_cov =
I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov =
I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
// error committed in integrating position from velocities
Matrix33 integration_error_cov =
I_3x3 * pow(kitti_calibration.integration_sigma, 2);
auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
imu_params->accelerometerCovariance =
measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance =
integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance =
measured_omega_cov; // gyro white noise in continuous
imu_params->omegaCoriolis = w_coriolis;
// Set ISAM2 parameters and create ISAM2 solver object
ISAM2Params isam_params;
isam_params.factorization = ISAM2Params::CHOLESKY;
isam_params.relinearizeSkip = 10;
ISAM2 isam(isam_params);
// Create the factor graph and values object that will store new factors and
// values to add to the incremental graph
NonlinearFactorGraph new_factors;
Values new_values; // values storing the initial estimates of new nodes in
// the factor graph
size_t j = 0;
size_t included_imu_measurement_count = 0;
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
// At each non=IMU measurement we initialize a new node in the graph
auto current_pose_key = X(i);
auto current_vel_key = V(i);
auto current_bias_key = B(i);
double t = gps_measurements[i].time;
if (i == first_gps_pose) {
// Create initial estimate and prior on initial pose, velocity, and biases
// 添加关于位姿、速度、bias的初始估计和prior factor
new_values.insert(current_pose_key, current_pose_global);
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(
current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(
current_bias_key, current_bias, sigma_init_b);
} else {
double t_previous = gps_measurements[i - 1].time;
// Summarize IMU data between the previous GPS measurement and now
// 两个GPS帧之间进行IMU预积分
current_summarized_measurement =
std::make_shared<PreintegratedImuMeasurements>(imu_params,
current_bias);
while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
if (imu_measurements[j].time >= t_previous) {
current_summarized_measurement->integrateMeasurement(
imu_measurements[j].accelerometer, imu_measurements[j].gyroscope,
imu_measurements[j].dt);
included_imu_measurement_count++;
}
j++;
}
// Create IMU factor
// 创建IMU Factor
auto previous_pose_key = X(i - 1);
auto previous_vel_key = V(i - 1);
auto previous_bias_key = B(i - 1);
new_factors.emplace_shared<ImuFactor>(
previous_pose_key, previous_vel_key, current_pose_key,
current_vel_key, previous_bias_key, *current_summarized_measurement);
// Bias evolution as given in the IMU metadata
// 从元数据中获取bias的噪声模型
auto sigma_between_b = noiseModel::Diagonal::Sigmas(
(Vector6() << Vector3::Constant(
sqrt(included_imu_measurement_count) *
kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) *
kitti_calibration.gyroscope_bias_sigma))
.finished());
// 利用bias添加BetweenFactor
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(
previous_bias_key, current_bias_key, imuBias::ConstantBias(),
sigma_between_b);
// Create GPS factor
// 构建并向因子图中添加GPS factor
auto gps_pose =
Pose3(current_pose_global.rotation(), gps_measurements[i].position);
if ((i % gps_skip) == 0) {//到达添加GPS因子的周期
new_factors.emplace_shared<PriorFactor<Pose3>>(
current_pose_key, gps_pose, noise_model_gps);
new_values.insert(current_pose_key, gps_pose);
printf("############ POSE INCLUDED AT TIME %.6lf ############\n",
t);
cout << gps_pose.translation();
printf("\n\n");
} else {
new_values.insert(current_pose_key, current_pose_global);//否则只进行变量的添加
}
// Add initial values for velocity and bias based on the previous estimates
// 添加速度和bias变量
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
// Update solver
// =======================================================================
// We accumulate 2*GPSskip GPS measurements before updating the solver a first so that the heading becomes observable.
// 在第一次解算之前累积一定时间以便于可观测
if (i > (first_gps_pose + 2 * gps_skip)) {
printf("############ NEW FACTORS AT TIME %.6lf ############\n",
t);
new_factors.print();
isam.update(new_factors, new_values);//更新解算
// Reset the newFactors and newValues list
// 重置graphs和Values
new_factors.resize(0);
new_values.clear();
// Extract the result/current estimates
Values result = isam.calculateEstimate();//从isam2求解器中读取值
current_pose_global = result.at<Pose3>(current_pose_key);
current_velocity_global = result.at<Vector3>(current_vel_key);
current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
printf("\n############ POSE AT TIME %lf ############\n", t);
current_pose_global.print();
printf("\n\n");
}
}
}
// Save results to file
printf("\nWriting results to file...\n");
FILE* fp_out = fopen(output_filename.c_str(), "w+");
fprintf(fp_out,
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
Values result = isam.calculateEstimate();
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
auto pose_key = X(i);
auto vel_key = V(i);
auto bias_key = B(i);
auto pose = result.at<Pose3>(pose_key);
auto velocity = result.at<Vector3>(vel_key);
auto bias = result.at<imuBias::ConstantBias>(bias_key);
auto pose_quat = pose.rotation().toQuaternion();
auto gps = gps_measurements[i].position;
cout << "State at #" << i << endl;
cout << "Pose:" << endl << pose << endl;
cout << "Velocity:" << endl << velocity << endl;
cout << "Bias:" << endl << bias << endl;
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(), gps(0),
gps(1), gps(2));
}
fclose(fp_out);
isam.update(new_factors, new_values);//更新解算
// Reset the newFactors and newValues list
// 重置graphs和Values
new_factors.resize(0);
new_values.clear();
// Extract the result/current estimates
Values result = isam.calculateEstimate();//从isam2求解器中读取值
graphs和Values都是const &传递
所以iSAM求解器和
new_factors.resize(0);
new_values.clear();
上述代码不会影响iSAM求解器中的值
isam优化器的重置见lio-sam有例子
/**
* 重置ISAM2优化器
*/
void resetOptimization()
{
gtsam::ISAM2Params optParameters;
optParameters.relinearizeThreshold = 0.1;
optParameters.relinearizeSkip = 1;
optimizer = gtsam::ISAM2(optParameters);
gtsam::NonlinearFactorGraph newGraphFactors;
graphFactors = newGraphFactors;
gtsam::Values NewGraphValues;
graphValues = NewGraphValues;
}
相当于重新定义
/**
* Add new factors, updating the solution and relinearizing as needed.
*
* Optionally, this function remove existing factors from the system to enable
* behaviors such as swapping existing factors with new ones.
*
* Add new measurements, and optionally new variables, to the current system.
* This runs a full step of the ISAM2 algorithm, relinearizing and updating
* the solution as needed, according to the wildfire and relinearize
* thresholds.
*
* @param newFactors The new factors to be added to the system
* @param newTheta Initialization points for new variables to be added to the
* system. You must include here all new variables occuring in newFactors
* (which were not already in the system). There must not be any variables
* here that do not occur in newFactors, and additionally, variables that were
* already in the system must not be included here.
* @param removeFactorIndices Indices of factors to remove from system
* @param force_relinearize Relinearize any variables whose delta magnitude is
* sufficiently large (Params::relinearizeThreshold), regardless of the
* relinearization interval (Params::relinearizeSkip).
* @param constrainedKeys is an optional map of keys to group labels, such
* that a variable can be constrained to a particular grouping in the
* BayesTree
* @param noRelinKeys is an optional set of nonlinear keys that iSAM2 will
* hold at a constant linearization point, regardless of the size of the
* linear delta
* @param extraReelimKeys is an optional set of nonlinear keys that iSAM2 will
* re-eliminate, regardless of the size of the linear delta. This allows the
* provided keys to be reordered.
* @return An ISAM2Result struct containing information about the update
*/
virtual ISAM2Result update(
const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
const Values& newTheta = Values(),
const FactorIndices& removeFactorIndices = FactorIndices(),
const boost::optional<FastMap<Key, int> >& constrainedKeys = boost::none,
const boost::optional<FastList<Key> >& noRelinKeys = boost::none,
const boost::optional<FastList<Key> >& extraReelimKeys = boost::none,
bool force_relinearize = false);
/**
* Add new factors, updating the solution and relinearizing as needed.
*
* Alternative signature of update() (see its documentation above), with all
* additional parameters in one structure. This form makes easier to keep
* future API/ABI compatibility if parameters change.
*
* @param newFactors The new factors to be added to the system
* @param newTheta Initialization points for new variables to be added to the
* system. You must include here all new variables occuring in newFactors
* (which were not already in the system). There must not be any variables
* here that do not occur in newFactors, and additionally, variables that were
* already in the system must not be included here.
* @param updateParams Additional parameters to control relinearization,
* constrained keys, etc.
* @return An ISAM2Result struct containing information about the update
* @note No default parameters to avoid ambiguous call errors.
*/
virtual ISAM2Result update(const NonlinearFactorGraph& newFactors,
const Values& newTheta,
const ISAM2UpdateParams& updateParams);