有一个 n*n 的表格,每个位置有一些数列,其中 i 行 j 列里面的数列是所有满足长度为 m,值域是 1~n,且所有值的 gcd 与 i,j 的 gcd 相同的数组。
问你表格里总共有多少个数组。
害,世界上最好的还得是莫反。
_{_{_{\color{black}害,世界上最好的还得是莫反。}}}
害,世界上最好的还得是莫反。
当其它所有的题都在用奇奇怪怪的方式恶心你的时候
_{_{_{\color{black}当其它所有的题都在用奇奇怪怪的方式恶心你的时候}}}
当其它所有的题都在用奇奇怪怪的方式恶心你的时候
只有莫反,纯纯的推式子,纯纯的,多好啊。
_{_{_{\color{black}只有莫反,纯纯的推式子,纯纯的,多好啊。}}}
只有莫反,纯纯的推式子,纯纯的,多好啊。
(
_{_{_{\color{black}(}}}
(
还有捏嘛
c
s
p
怎么不考数学(算了考了我也不会,还是别考了吧
_{_{_{\color{black}还有捏嘛csp怎么不考数学(算了考了我也不会,还是别考了吧}}}
还有捏嘛csp怎么不考数学(算了考了我也不会,还是别考了吧
考虑枚举
gcd
\gcd
gcd 的值,再分别枚举由多少个数组以及多少个表格上的位置满足条件。
∑
d
=
1
n
(
∑
x
=
1
n
∑
y
=
1
n
[
gcd
(
x
,
y
)
=
d
]
)
(
∑
a
1
=
1
n
.
.
.
∑
a
m
=
1
n
[
gcd
(
a
1
,
.
.
.
,
a
m
=
d
)
]
)
\sum\limits_{d=1}^n(\sum\limits_{x=1}^n\sum\limits_{y=1}^n[\gcd(x,y)=d])(\sum\limits_{a_1=1}^n...\sum\limits_{a_m=1}^n[\gcd(a_1,...,a_m=d)])
d=1∑n(x=1∑ny=1∑n[gcd(x,y)=d])(a1=1∑n...am=1∑n[gcd(a1,...,am=d)])
∑
d
=
1
n
(
∑
x
=
1
⌊
n
d
⌋
∑
y
=
1
⌊
n
d
⌋
[
gcd
(
x
,
y
)
=
1
]
)
(
∑
a
1
=
1
⌊
n
d
⌋
.
.
.
∑
a
m
=
1
⌊
n
d
⌋
[
gcd
(
a
1
,
.
.
.
,
a
m
=
1
)
]
)
\sum\limits_{d=1}^n(\sum\limits_{x=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac{n}{d}\right\rfloor}[\gcd(x,y)=1])(\sum\limits_{a_1=1}^{\left\lfloor\frac{n}{d}\right\rfloor}...\sum\limits_{a_m=1}^{\left\lfloor\frac{n}{d}\right\rfloor}[\gcd(a_1,...,a_m=1)])
d=1∑n(x=1∑⌊dn⌋y=1∑⌊dn⌋[gcd(x,y)=1])(a1=1∑⌊dn⌋...am=1∑⌊dn⌋[gcd(a1,...,am=1)])
∑
d
=
1
n
(
∑
x
=
1
⌊
n
d
⌋
∑
y
=
1
⌊
n
d
⌋
∑
p
∣
gcd
(
x
,
y
)
μ
(
p
)
)
(
∑
a
1
=
1
⌊
n
d
⌋
.
.
.
∑
a
m
=
1
⌊
n
d
⌋
∑
p
∣
gcd
(
a
1
,
.
.
.
,
a
m
)
μ
(
p
)
)
\sum\limits_{d=1}^n(\sum\limits_{x=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{p|\gcd(x,y)}\mu(p))(\sum\limits_{a_1=1}^{\left\lfloor\frac{n}{d}\right\rfloor}...\sum\limits_{a_m=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{p|\gcd(a_1,...,a_m)}\mu(p))
d=1∑n(x=1∑⌊dn⌋y=1∑⌊dn⌋p∣gcd(x,y)∑μ(p))(a1=1∑⌊dn⌋...am=1∑⌊dn⌋p∣gcd(a1,...,am)∑μ(p))
∑
d
=
1
n
(
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
∑
x
=
1
⌊
n
d
p
⌋
∑
y
=
1
⌊
n
d
p
⌋
)
(
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
∑
a
1
=
1
⌊
n
d
p
⌋
.
.
.
∑
a
m
=
1
⌊
n
d
p
⌋
)
\sum\limits_{d=1}^n(\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)\sum\limits_{x=1}^{\left\lfloor\frac{n}{dp}\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac{n}{dp}\right\rfloor})(\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)\sum\limits_{a_1=1}^{\left\lfloor\frac{n}{dp}\right\rfloor}...\sum\limits_{a_m=1}^{\left\lfloor\frac{n}{dp}\right\rfloor})
d=1∑n(p=1∑⌊dn⌋μ(p)x=1∑⌊dpn⌋y=1∑⌊dpn⌋)(p=1∑⌊dn⌋μ(p)a1=1∑⌊dpn⌋...am=1∑⌊dpn⌋)
∑
d
=
1
n
(
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
(
⌊
n
d
p
⌋
)
2
)
(
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
(
⌊
n
d
p
⌋
)
m
)
\sum\limits_{d=1}^n(\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)(\left\lfloor\frac{n}{dp}\right\rfloor)^2)(\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)(\left\lfloor\frac{n}{dp}\right\rfloor)^m)
d=1∑n(p=1∑⌊dn⌋μ(p)(⌊dpn⌋)2)(p=1∑⌊dn⌋μ(p)(⌊dpn⌋)m)
∑
d
=
1
n
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
(
⌊
n
d
p
⌋
)
m
=
n
m
\sum\limits_{d=1}^n\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)(\left\lfloor\frac{n}{dp}\right\rfloor)^m=n^m
d=1∑np=1∑⌊dn⌋μ(p)(⌊dpn⌋)m=nm
∑
p
=
1
n
μ
(
p
)
(
⌊
n
p
⌋
)
m
=
n
m
−
∑
d
=
2
n
∑
p
=
1
⌊
n
d
⌋
μ
(
p
)
(
⌊
n
d
p
⌋
)
m
\sum\limits_{p=1}^n\mu(p)(\left\lfloor\frac{n}{p}\right\rfloor)^m=n^m-\sum\limits_{d=2}^n\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)(\left\lfloor\frac{n}{dp}\right\rfloor)^m
p=1∑nμ(p)(⌊pn⌋)m=nm−d=2∑np=1∑⌊dn⌋μ(p)(⌊dpn⌋)m
设
∑
p
=
1
n
μ
(
p
)
(
⌊
n
p
⌋
)
m
=
f
n
\sum\limits_{p=1}^n\mu(p)(\left\lfloor\frac{n}{p}\right\rfloor)^m=f_n
p=1∑nμ(p)(⌊pn⌋)m=fn
f n = n m − ∑ d = 2 n f ⌊ n d ⌋ f_n=n^m-\sum\limits_{d=2}^nf_{\left\lfloor\frac{n}{d}\right\rfloor} fn=nm−d=2∑nf⌊dn⌋
∑ d = 1 n ( ∑ p = 1 ⌊ n d ⌋ μ ( p ) ( ⌊ n d p ⌋ ) 2 ) ( f ⌊ n d ⌋ ) \sum\limits_{d=1}^n(\sum\limits_{p=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(p)(\left\lfloor\frac{n}{dp}\right\rfloor)^2)(f_{\left\lfloor\frac{n}{d}\right\rfloor}) d=1∑n(p=1∑⌊dn⌋μ(p)(⌊dpn⌋)2)(f⌊dn⌋)
其中 f f f 可以记忆化一下在常规整除分块做到 O ( n 3 4 ) O(n^{\frac{3}{4}}) O(n43),左边的一坨式子,都可以用杜教筛快速 rush μ \mu μ 前缀和也是 O ( n 3 4 ) O(n^{\frac{3}{4}}) O(n43) 从而通过题目捏。
#include
#include
#define ll long long
#define mo 998244353
using namespace std;
const int Lim = 1e6;
const int B = 2e5 + 100;
ll n, m, lim, mus[Lim + 100];
ll rem_f[B], rem_mu[B], prime[Lim + 100];
bool np[Lim + 100];
int id(ll x) {
if (x <= lim) return x; return lim + n / x;
}
ll ksm(ll x, ll y) {
ll re = 1;
while (y) {
if (y & 1) re = re * x % mo;
x = x * x % mo; y >>= 1;
}
return re;
}
ll get_f(ll now) {
if (rem_f[id(now)] != -1) return rem_f[id(now)];
ll re = ksm(now, m);
for (ll L = 2, R; L <= now; L = R + 1) {
R = now / (now / L);
(re += mo - (R - L + 1) % mo * get_f(now / L) % mo) %= mo;
}
return rem_f[id(now)] = re;
}
ll ask(ll now) {
if (now <= Lim) return (mus[now] % mo + mo) % mo;
if (rem_mu[id(now)] != -1) return rem_mu[id(now)];
ll re = 1;
for (int L = 2, R; L <= now; L = R + 1) {
R = now / (now / L);
(re += mo - (R - L + 1) * ask(now / L) % mo) %= mo;
}
return rem_mu[id(now)] = re;
}
ll slove(ll n) {
ll ans = 0;
for (ll L = 1, R; L <= n; L = R + 1) {
R = n / (n / L);
ll mus = (ask(R) - ask(L - 1) + mo) % mo;
(ans += mus * (n / L) % mo * (n / L) % mo) %= mo;
}
return ans;
}
int main() {
for (int i = 0; i < B; i++) rem_f[i] = rem_mu[i] = -1;
mus[1] = 1;
for (int i = 2; i <= Lim; i++) {
if (!np[i]) mus[i] = -1, prime[++prime[0]] = i;
for (int j = 1; j <= prime[0] && i * prime[j] <= Lim; j++) {
np[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
else mus[i * prime[j]] = -mus[i];
}
mus[i] += mus[i - 1];
}
scanf("%lld %lld", &n, &m); lim = sqrt(n);
ll ans = 0;
for (ll L = 1, R; L <= n; L = R + 1) {
R = n / (n / L);
(ans += (R - L + 1) % mo * slove(n / L) % mo * get_f(n / L) % mo) %= mo;
}
printf("%lld", ans);
return 0;
}