simple linear Kalman filter on a moving 2D point, but done using factor graphs.This example manually creates all of the needed data structures
#include
#include
//#include
#include
#include
#include
#include
#include
using namespace std;
using namespace gtsam;
int main() {
// [code below basically does SRIF with Cholesky]
// Create a factor graph to perform the inference
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
// Create the desired ordering
Ordering::shared_ptr ordering(new Ordering);
// Create a structure to hold the linearization points
Values linearizationPoints;
// Ground truth example
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable
Symbol x0('x',0);
ordering->insert(x0, 0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
PriorFactor<Point2> factor1(x0, x_initial, P_initial);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
// For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
// Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
// where F is the state transition model/matrix, B is the control input model,
// and w is zero-mean, Gaussian white noise with covariance Q
// Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
// physical property, such as velocity or acceleration, and G is derived from physics
//
// For the purposes of this example, let us assume we are using a constant-position model and
// the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
// and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1];
//
// In the case of factor graphs, the factor related to the motion model would be defined as
// f2 = (f(x_{t}) - x_{t+1}) * Q^-1 * (f(x_{t}) - x_{t+1})^T
// Conveniently, there is a factor type, called a BetweenFactor, that can generate this factor
// given the expected difference, f(x_{t}) - x_{t+1}, and Q.
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
// = (F - I)*x_{t} + B*u_{t}
// = B*u_{t} (for our example)
Symbol x1('x',1);
ordering->insert(x1, 1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model
// Eliminate this in order x0, x1, to get Bayes net P(x0|x1)P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
//
// Because of the way GTSAM works internally, we have used nonlinear class even though this example
// system is linear. We first convert the nonlinear factor graph into a linear one, using the specified
// ordering. Linear factors are simply numbered, and are not accessible via named key like the nonlinear
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver0(*linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// Some care must be done here, as the linearization point in future steps will be different
// than what was used when the factor was created.
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0
// After this step, the factor needs to be linearized around x1 = x1_predict
// This changes the factor to f = || F*dx1'' - b'' ||^2
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
// -> b' = b'' + F(dx1' - dx1'')
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->R(), cg0->d() - cg0->R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
// where f3 is the prior from the previous step, and
// where f4 is a measurement factor
//
// So, now we need to create the measurement factor, f4
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
//
// For the purposes of this example, let us assume we have something like a GPS that returns
// the current position of the robot. For this simple example, we can use a PriorFactor to model the
// observation as it depends on only a single state variable, x1. To model real sensor observations
// generally requires the creation of a new factor type. For example, factors for range sensors, bearing
// sensors, and camera projections have already been added to GTSAM.
//
// In the case of factor graphs, the factor related to the measurements would be defined as
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
// Eliminate this in order x1, to get Bayes net P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) <, 0.1, 0.1));
BetweenFactor<Point2> factor6(x1, x2, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor10(x2, x3, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);
return 0;
}
利用均方根信息滤波和Cholesky
// Create a factor graph to perform the inference
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
// Create the desired ordering
Ordering::shared_ptr ordering(new Ordering);
// Create a structure to hold the linearization points
Values linearizationPoints;
factor graph、ordering和Values
// Ground truth example
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Create new state variable
Symbol x0('x',0);
ordering->insert(x0, 0);
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
// This is equivalent to x_0 and P_0
Point2 x_initial(0,0);
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
PriorFactor<Point2> factor1(x0, x_initial, P_initial);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x0, x_initial);
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
初始化Key和ordering,对因子进行线性化
预测
arg
max
x
1
P
(
x
1
)
=
P
(
x
1
∣
x
0
)
P
(
x
0
)
\mathop{\arg\max}\limits_{x_{1}}\space P(x_1) = P(x_1|x_0) P(x_0)
x1argmax P(x1)=P(x1∣x0)P(x0)
在卡尔曼滤波中表示为
x
t
+
1
∣
t
a
n
d
P
t
+
1
∣
t
x_{t+1|t}\ and\ P_{t+1|t}
xt+1∣t and Pt+1∣t
motion model:
f
(
x
t
)
=
x
t
+
1
∣
t
f(x_{t}) = x_{t+1|t}
f(xt)=xt+1∣t
线性化:
f
(
x
t
)
=
F
∗
x
t
+
B
∗
u
t
+
w
f(x_{t}) = F*x_{t} + B*u_{t} + w
f(xt)=F∗xt+B∗ut+w
F
F
F->transition model/matrix
B
B
B->control input model
w
w
w ->zero-mean, Gaussian white noise with covariance
Q
Q
Q
某些时候
Q
=
G
∗
w
∗
G
T
Q= G*w*G^T
Q=G∗w∗GT
在factor graph中factor related to the motion model ->defined as
f
2
=
(
f
(
x
t
)
−
x
t
+
1
)
∗
Q
−
1
∗
(
f
(
x
t
)
−
x
t
+
1
)
T
f2 = (f(x_{t}) - x_{t+1}) * Q^{-1} * (f(x_{t}) - x_{t+1})^T
f2=(f(xt)−xt+1)∗Q−1∗(f(xt)−xt+1)T
BetweenFactor可以生成该因子
given the expected difference,
f
(
x
t
)
−
x
t
+
1
f(x_{t}) - x_{t+1}
f(xt)−xt+1, and
Q
Q
Q.
所以
d
i
f
f
e
r
e
n
c
e
=
x
t
+
1
−
x
t
=
F
∗
x
t
+
B
∗
u
t
−
I
∗
x
t
=
(
F
−
I
)
∗
x
t
+
B
∗
u
t
=
B
∗
u
t
定义x1和BetweenFactor
Symbol x1('x',1);
ordering->insert(x1, 1);
Point2 difference(1,0);
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x1, x_initial);
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
至此构建了小型因子图f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model
消元得到贝叶斯网络
P
(
x
0
∣
x
1
)
P
(
x
1
)
P(x_0|x_1)P(x_1)
P(x0∣x1)P(x1)
然后求解linear factor graph,将其转化为a linear Bayes Network
P
(
x
0
,
x
1
)
=
P
(
x
0
∣
x
1
)
∗
P
(
x
1
)
P(x_0,x_1) = P(x_0|x_1)*P(x_1)
P(x0,x1)=P(x0∣x1)∗P(x1)
from Bayes Network获取估计值
进行线性化点的更新
GaussianSequentialSolver solver0(*linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
Point2 x1_predict = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate
linearizationPoints.update(x1, x1_predict);
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
将根条件
P
(
x
1
)
P(x_1)
P(x1)转化为下一步的先验
必须注意线性化点的不同(未来线性化点和创建因子时使用的线性化点不同)
f
=
∣
∣
F
∗
d
x
1
′
−
(
F
∗
x
0
−
x
1
)
∣
∣
2
f = || F*dx_1' - (F*x_0 - x_1) ||^2
f=∣∣F∗dx1′−(F∗x0−x1)∣∣2起初的线性化点
x
1
=
x
0
x_1 = x_0
x1=x0
在这一步后,线性化点更改为
x
1
=
x
1
_
p
r
e
d
i
c
t
x_1 = x_{1\_predict}
x1=x1_predict
This changes the factor to f
f
=
∣
∣
F
∗
d
x
1
′
′
−
b
′
′
∣
∣
2
=
∣
∣
F
∗
(
d
x
1
′
−
(
d
x
1
′
−
d
x
1
′
′
)
)
−
b
′
′
∣
∣
2
=
∣
∣
F
∗
d
x
1
′
−
F
∗
(
d
x
1
′
−
d
x
1
′
′
)
−
b
′
′
∣
∣
2
=
∣
∣
F
∗
d
x
1
′
−
(
b
′
′
+
F
(
d
x
1
′
−
d
x
1
′
′
)
)
∣
∣
2
−
>
b
′
=
b
′
′
+
F
(
d
x
1
′
−
d
x
1
′
′
)
−
>
b
′
′
=
b
′
−
F
(
d
x
1
′
−
d
x
1
′
′
)
=
∣
∣
F
∗
d
x
1
′
′
−
(
b
′
−
F
(
d
x
1
′
−
d
x
1
′
′
)
)
∣
∣
2
=
∣
∣
F
∗
d
x
1
′
′
−
(
b
′
−
F
(
x
p
r
e
d
i
c
t
−
x
i
n
i
t
a
l
)
)
∣
∣
2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->R(), cg0->d() - cg0->R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
观测到达后
P
(
x
1
∣
z
1
)
∼
P
(
z
1
∣
x
1
)
∗
P
(
x
1
)
f
3
(
x
1
)
∗
f
4
(
x
1
;
z
1
)
P(x_1|z_1) \sim P(z_1|x_1)*P(x_1) ~ f_3(x_1)*f_4(x_1;z_1)
P(x1∣z1)∼P(z1∣x1)∗P(x1) f3(x1)∗f4(x1;z1)
f
3
f_3
f3 is the prior from the previous step
f
4
f_4
f4 is a measurement factor
测量方程:
h
(
x
t
)
=
z
t
h(x_{t}) = z_{t}
h(xt)=zt
假设系统是线性的:
h
(
x
t
)
=
H
∗
x
t
+
v
h(x_{t}) = H*x_{t} + v
h(xt)=H∗xt+v
H
H
H->观测模型
v
v
v->0 mean with Gaussian white noise with covariance
R
R
R
假设类似于GPS类型的观测
在这种factor graph情形下measurements would be defined as
f
4
=
(
h
(
x
t
)
−
z
t
)
∗
R
−
1
∗
(
h
(
x
t
)
−
z
t
)
T
=
(
x
t
−
z
t
)
∗
R
−
1
∗
(
x
t
−
z
t
)
T
可以使用PriorFactor
均值是
z
t
z_{t}
zt,协方差是
R
R
R
Point2 z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
now made the small factor graph f3-(x1)-f4
factor
f
3
f_3
f3 is the prior from previous time(
P
(
x
1
)
P(x_1)
P(x1) )
factor
f
4
f_4
f4 is from the measurement,
z
1
z_1
z1 (
P
(
x
1
∣
z
1
)
P(x_1|z_1)
P(x1∣z1) )
Eliminate this in order
x
1
x_1
x1, to get Bayes net
P
(
x
1
)
P(x_1)
P(x1)
posterior
P
(
x
1
)
P(x_1)
P(x1)
Solve the linear factor graph, converting it into a linear Bayes Network
P
(
x
0
,
x
1
)
=
P
(
x
0
∣
x
1
)
∗
P
(
x
1
)
P(x_0,x_1) = P(x_0|x_1)*P(x_1)
P(x0,x1)=P(x0∣x1)∗P(x1)
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x1_update = linearizationPoints.at<Point2>(x1).retract(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
// Create a key for the new state
Symbol x2('x',2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) <, 0.1, 0.1));
BetweenFactor<Point2> factor6(x1, x2, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_predict = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
// And update using z2 ...
Point2 z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x2_update = linearizationPoints.at<Point2>(x2).retract(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
// Create a key for the new state
Symbol x3('x',3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
// Create a nonlinear factor describing the motion model
difference = Point2(1,0);
Q = noiseModel::Diagonal::Sigmas((Vec(2) << 0.1, 0.1));
BetweenFactor<Point2> factor10(x2, x3, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_predict = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
// And update using z3 ...
Point2 z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((Vec(2) << 0.25, 0.25));
PriorFactor<Point2> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Point2 x3_update = linearizationPoints.at<Point2>(x3).retract(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);