原文地址:【概率论与数理统计(研究生课程)】知识点总结9(回归分析)
y
=
β
0
+
β
1
x
+
ϵ
,
ϵ
∼
N
(
μ
,
σ
2
)
E
(
ϵ
)
=
0
,
D
(
ϵ
)
=
σ
2
>
0
⟹
E
(
y
)
=
β
0
+
β
1
x
y=β0+β1x+ϵ,ϵ∼N(μ,σ2)E(ϵ)=0,D(ϵ)=σ2>0⟹E(y)=β0+β1x
回归方程: y ^ = β 0 ^ + β 1 ^ x \hat{y}=\hat{\beta_0}+\hat{\beta_1}x y^=β0^+β1^x
推导过程:
y
i
−
E
(
y
i
)
=
y
i
−
(
β
0
+
β
1
x
i
)
Q
(
β
1
,
β
2
)
=
∑
i
=
1
n
(
y
i
−
E
(
y
i
)
)
2
=
∑
i
=
1
n
(
y
i
−
β
0
−
β
1
x
i
)
2
make
∂
Q
(
β
0
,
β
1
)
∂
β
0
=
−
2
∑
i
=
1
n
(
y
i
−
β
0
−
β
1
x
i
)
=
0
make
∂
Q
(
β
0
,
β
1
)
∂
β
1
=
−
2
∑
i
=
1
n
x
i
(
y
i
−
β
0
−
β
1
x
i
)
=
0
yi−E(yi)=yi−(β0+β1xi)Q(β1,β2)=n∑i=1(yi−E(yi))2=n∑i=1(yi−β0−β1xi)2make ∂Q(β0,β1)∂β0=−2n∑i=1(yi−β0−β1xi)=0make ∂Q(β0,β1)∂β1=−2n∑i=1xi(yi−β0−β1xi)=0
整理得到正规方程组:
n
β
0
^
+
n
x
ˉ
β
1
^
=
n
y
ˉ
(
1
)
n
x
ˉ
β
0
^
+
(
∑
i
=
1
n
x
i
2
)
β
1
^
=
∑
i
=
1
n
x
i
y
i
(
2
)
n^β0+nˉx^β1=nˉy(1)nˉx^β0+(n∑i=1x2i)^β1=n∑i=1xiyi(2)
解上述方程组得到:
β
1
^
=
L
x
y
L
x
x
β
0
^
=
y
ˉ
−
β
1
^
x
ˉ
L
x
x
=
∑
i
=
1
n
(
x
i
−
x
ˉ
)
2
=
∑
i
=
1
n
x
i
2
−
n
x
ˉ
2
=
∑
i
=
1
n
x
i
2
−
1
n
(
∑
i
=
1
n
x
i
)
2
L
y
y
=
∑
i
=
1
n
(
y
i
−
y
ˉ
)
2
=
∑
i
=
1
n
y
i
2
−
n
y
ˉ
2
=
∑
i
=
1
n
y
i
2
−
1
n
(
∑
i
=
1
n
y
i
)
2
L
x
y
=
∑
i
=
1
n
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
∑
i
=
1
n
x
i
y
i
−
n
x
ˉ
y
ˉ
=
∑
i
=
1
n
x
i
y
i
−
1
n
∑
i
=
1
n
x
i
∑
i
=
1
n
y
i
^β1=LxyLxx^β0=ˉy−^β1ˉxLxx=n∑i=1(xi−ˉx)2=n∑i=1x2i−nˉx2=n∑i=1x2i−1n(n∑i=1xi)2Lyy=n∑i=1(yi−ˉy)2=n∑i=1y2i−nˉy2=n∑i=1y2i−1n(n∑i=1yi)2Lxy=n∑i=1(xi−ˉx)(yi−ˉy)=n∑i=1xiyi−nˉxˉy=n∑i=1xiyi−1nn∑i=1xin∑i=1yi
如果题目中给了 ∑ \sum ∑形式的数据, L x x , L y y , L x y L_{xx},L_{yy},L_{xy} Lxx,Lyy,Lxy一般用上述公式最右边的方式来求。
Q e = ∑ i = 1 n e i 2 = ∑ i = 1 n ( y i − y i ^ ) 2 = ∑ i = 1 n ( y i − β 0 ^ − β 1 ^ x i ) 2 = L y y − β 1 ^ L x y = L y y − L x y 2 L x x Q_e=\sum\limits_{i=1}^{n}e_i^2=\sum\limits_{i=1}^{n}(y_i-\hat{y_i})^2=\sum\limits_{i=1}^{n}(y_i-\hat{\beta_0}-\hat{\beta_1}x_i)^2=L_{yy}-\hat{\beta_1}L_{xy}=L_{yy}-\frac{L_{xy}^2}{L_{xx}} Qe=i=1∑nei2=i=1∑n(yi−yi^)2=i=1∑n(yi−β0^−β1^xi)2=Lyy−β1^Lxy=Lyy−LxxLxy2
定理:
Q
e
σ
2
∼
χ
2
(
n
−
2
)
\frac{Q_e}{\sigma^2}\sim\chi^2(n-2)
σ2Qe∼χ2(n−2)
E
(
Q
e
σ
2
)
=
n
−
2
⟹
E
(
Q
e
n
−
2
)
=
σ
2
⟹
σ
2
^
=
Q
e
n
−
2
E(Qeσ2)=n−2⟹E(Qen−2)=σ2⟹^σ2=Qen−2
σ
^
2
\hat{\sigma}^2
σ^2的无偏估计为
Q
e
n
−
2
\frac{Q_e}{n-2}
n−2Qe
β 0 , β 1 \beta_0,\beta_1 β0,β1的最小二乘估计量都是无偏的: E ( β 0 ^ ) = β 0 , E ( β 1 ^ ) = β 1 E(\hat{\beta_0})=\beta_0,\quad E(\hat{\beta_1})=\beta_1 E(β0^)=β0,E(β1^)=β1
β 0 ^ ∼ N ( β 0 , ( 1 n + x ˉ 2 L x x ) σ 2 ) \hat{\beta_0}\sim N(\beta_0, (\frac{1}{n}+\frac{\bar{x}^2}{L_{xx}})\sigma^2) β0^∼N(β0,(n1+Lxxxˉ2)σ2)
β 1 ^ ∼ N ( β 1 , σ 2 L x x ) \hat{\beta_1}\sim N(\beta_1,\frac{\sigma^2}{L_{xx}}) β1^∼N(β1,Lxxσ2)
C o v ( β 0 ^ , β 1 ^ ) = − x ˉ L x x σ 2 Cov(\hat{\beta_0},\hat{\beta_1})=-\frac{\bar{x}}{L_{xx}}\sigma^2 Cov(β0^,β1^)=−Lxxxˉσ2
y 0 ^ ∼ N ( β 0 + β 1 x 0 , ( 1 n + ( x 0 − x ˉ ) 2 L x x ) σ 2 ) \hat{y_0}\sim N(\beta_0+\beta_1x_0, (\frac{1}{n}+\frac{(x_0-\bar{x})^2}{L_{xx}})\sigma^2) y0^∼N(β0+β1x0,(n1+Lxx(x0−xˉ)2)σ2)
H 0 : β 1 = 0 ; H 1 : β 1 ≠ 0 H_0: \beta_1=0; \quad H_1:\beta_1\neq0 H0:β1=0;H1:β1=0
选取统计量:
β
1
^
∼
N
(
β
1
,
σ
2
L
x
x
)
⟹
β
1
^
−
β
1
σ
2
L
x
x
∼
N
(
0
,
1
)
→
H
0
β
1
^
L
x
x
σ
∼
N
(
0
,
1
)
^β1∼N(β1,σ2Lxx)⟹^β1−β1√σ2Lxx∼N(0,1)H0→^β1√Lxxσ∼N(0,1)
若需构造
t
t
t检验,还需要一个
χ
2
\chi^2
χ2分布,而
Q
e
σ
2
∼
χ
2
(
n
−
2
)
\frac{Q_e}{\sigma^2}\sim\chi^2(n-2)
σ2Qe∼χ2(n−2),从而:
T
=
β
1
^
L
x
x
σ
Q
e
σ
2
/
(
n
−
2
)
→
σ
2
^
=
Q
e
n
−
2
β
1
^
L
x
x
σ
^
∼
t
(
n
−
2
)
T=\frac{\frac{\hat{\beta_1}\sqrt{L_{xx}}}{\sigma}}{\sqrt{\frac{Q_e}{\sigma^2}/(n-2)}}\xrightarrow{\hat{\sigma^2}=\frac{Q_e}{n-2}}\frac{\hat{\beta_1}\sqrt{L_{xx}}}{\hat\sigma} \sim t(n-2)
T=σ2Qe/(n−2)σβ1^Lxxσ2^=n−2Qeσ^β1^Lxx∼t(n−2)
若使用
F
F
F检验,需要计算回归平方和以及残差平方和:
S
R
2
=
∑
i
=
1
n
(
y
i
^
−
y
i
ˉ
)
2
=
β
1
^
L
x
y
S
e
2
=
∑
i
=
1
n
(
y
i
−
y
i
^
)
2
=
S
T
2
−
S
R
2
=
L
y
y
−
β
1
^
L
x
y
S
R
2
σ
2
∼
χ
2
(
1
)
,
S
e
2
σ
2
∼
χ
2
(
n
−
2
)
F
=
S
R
2
σ
2
/
1
S
e
2
σ
2
/
(
n
−
2
)
=
(
n
−
2
)
S
R
2
S
e
2
∼
F
(
1
,
n
−
2
)
S2R=n∑i=1(^yi−¯yi)2=^β1LxyS2e=n∑i=1(yi−^yi)2=S2T−S2R=Lyy−^β1LxyS2Rσ2∼χ2(1),S2eσ2∼χ2(n−2)F=S2Rσ2/1S2eσ2/(n−2)=(n−2)S2RS2e∼F(1,n−2)
拒绝域
t t t检验拒绝域: ∣ T ∣ = ∣ β 1 ^ L x x σ ^ ∣ ≥ t α 2 ( n − 2 ) |T|=|\frac{\hat{\beta_1}\sqrt{L_{xx}}}{\hat{\sigma}}|\ge t_{\frac{\alpha}{2}}(n-2) ∣T∣=∣σ^β1^Lxx∣≥t2α(n−2)
F F F检验拒绝域: F ≥ F α ( 1 , n − 2 ) F\ge F_\alpha(1,n-2) F≥Fα(1,n−2)
确定 t α 2 ( n − 2 ) o r F α ( 1 , n − 2 ) t_{\frac{\alpha}{2}(n-2)}\quad or \quad F_{\alpha}(1,n-2) t2α(n−2)orFα(1,n−2)
计算 ∣ T ∣ o r F |T|\quad or\quad F ∣T∣orF
判断结果
β
1
^
∼
N
(
β
1
,
σ
2
L
x
x
)
⟹
β
1
^
−
β
1
σ
2
L
x
x
∼
N
(
0
,
1
)
⟹
(
β
1
^
−
β
1
)
L
x
x
σ
∼
N
(
0
,
1
)
T
=
(
β
1
^
−
β
1
)
L
x
x
σ
Q
e
σ
2
/
(
n
−
2
)
→
σ
2
^
=
Q
e
n
−
2
(
β
1
^
−
β
1
)
L
x
x
σ
^
∼
t
(
n
−
2
)
^β1∼N(β1,σ2Lxx)⟹^β1−β1√σ2Lxx∼N(0,1)⟹(^β1−β1)√Lxxσ∼N(0,1)T=(^β1−β1)√Lxxσ√Qeσ2/(n−2)^σ2=Qen−2→(^β1−β1)√Lxxˆσ∼t(n−2)
则 β 1 \beta_1 β1置信水平为 1 − α 1-\alpha 1−α的置信区间为: ( β 1 ^ ± σ ^ L x x t α 2 ( n − 2 ) ) (\hat{\beta_1}\pm \frac{\hat{\sigma}}{\sqrt{L_{xx}}}t_{\frac{\alpha}{2}}(n-2)) (β1^±Lxxσ^t2α(n−2))
设回归方程为 y ^ = β 0 ^ + β 1 ^ x \hat{y}=\hat{\beta_0}+\hat{\beta_1}x y^=β0^+β1^x,对任意给定的 x = x 0 x=x_0 x=x0, y 0 y_0 y0的均值 E ( y 0 ) = β 0 + β 1 x 0 E(y_0)=\beta_0+\beta_1 x_0 E(y0)=β0+β1x0, E ( y 0 ) E(y_0) E(y0)的无偏估计为 y 0 ^ = β 0 ^ + β 1 ^ x 0 \hat{y_0}=\hat{\beta_0}+\hat{\beta_1}x_0 y0^=β0^+β1^x0
β 0 ^ ∼ N ( β 0 , ( 1 n + x ˉ 2 L x x ) σ 2 ) \hat{\beta_0}\sim N(\beta_0, (\frac{1}{n}+\frac{\bar{x}^2}{L_{xx}})\sigma^2) β0^∼N(β0,(n1+Lxxxˉ2)σ2)
β 1 ^ ∼ N ( β 1 , σ 2 L x x ) \hat{\beta_1}\sim N(\beta_1,\frac{\sigma^2}{L_{xx}}) β1^∼N(β1,Lxxσ2)
C o v ( β 0 ^ , β 1 ^ ) = − x ˉ L x x σ 2 Cov(\hat{\beta_0},\hat{\beta_1})=-\frac{\bar{x}}{L_{xx}}\sigma^2 Cov(β0^,β1^)=−Lxxxˉσ2
D ( y 0 ^ ) = D ( β 0 ^ ) + D ( β 1 ^ x 0 ) + 2 C o v ( β 0 ^ , β 1 ^ x 0 ) = ( 1 n + ( x ˉ − x 0 ) 2 L x x ) σ 2 D(\hat{y_0})=D(\hat{\beta_0})+D(\hat{\beta_1}x_0)+2Cov(\hat{\beta_0},\hat{\beta_1}x_0)=(\frac{1}{n}+\frac{(\bar{x}-x_0)^2}{L_{xx}})\sigma^2 D(y0^)=D(β0^)+D(β1^x0)+2Cov(β0^,β1^x0)=(n1+Lxx(xˉ−x0)2)σ2
y
0
^
∼
N
(
β
0
+
β
1
x
0
,
(
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
)
σ
2
)
\hat{y_0}\sim N(\beta_0+\beta_1x_0, (\frac{1}{n}+\frac{(x_0-\bar{x})^2}{L_{xx}})\sigma^2)
y0^∼N(β0+β1x0,(n1+Lxx(x0−xˉ)2)σ2)
于是
E
(
y
0
)
E(y_0)
E(y0)的置信度为
1
−
α
1-\alpha
1−α的置信区间为:
(
y
0
^
−
δ
0
,
y
0
^
+
δ
0
)
,
δ
=
t
α
2
(
n
−
2
)
σ
^
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
(\hat{y_0}-\delta_0,\hat{y_0}+\delta_0),\delta=t_{\frac{\alpha}{2}}(n-2)\hat{\sigma}\sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{L_{xx}}}
(y0^−δ0,y0^+δ0),δ=t2α(n−2)σ^n1+Lxx(x0−xˉ)2
y
0
−
y
0
^
∼
N
(
0
,
[
1
+
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
]
σ
2
)
U
=
y
0
−
y
0
^
σ
1
+
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
∼
N
(
0
,
1
)
T
=
y
0
−
y
0
^
σ
^
1
+
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
∼
t
(
n
−
2
)
y0−^y0∼N(0,[1+1n+(x0−ˉx)2Lxx]σ2)U=y0−^y0σ√1+1n+(x0−ˉx)2Lxx∼N(0,1)T=y0−^y0ˆσ√1+1n+(x0−ˉx)2Lxx∼t(n−2)
因此,
y
0
y_0
y0的置信度为
1
−
α
1-\alpha
1−α的区间为
(
y
0
^
−
δ
,
y
0
^
+
δ
)
,
δ
=
t
α
2
(
n
−
2
)
σ
^
1
+
1
n
+
(
x
0
−
x
ˉ
)
2
L
x
x
(\hat{y_0}-\delta,\hat{y_0}+\delta),\delta=t_{\frac{\alpha}{2}}(n-2)\hat{\sigma}\sqrt{1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{L_{xx}}}
(y0^−δ,y0^+δ),δ=t2α(n−2)σ^1+n1+Lxx(x0−xˉ)2


