• 深入剖析堆原理与堆排序


    堆的介绍

    • 完全二叉树:完全二叉树是满二叉树去除最后N个节点之后得到的树(N0,NN
    • 大根堆:节点的父亲节点比自身节点大,比如根节点的值为8,比其子节点 7, 6大,其余的类似。

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/01.png

    • 小根堆:节点的父亲节点比自身节点小,比如根节点的值为1,比其子节点2, 3的值要小,其余的也类似。

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/02.png

    堆的实现

    如何存储一个堆

    堆的存储是使用数组实现的,下标从0开始从左至右从上到下,依次递增,例如上述的小根堆存储在数组中就是

    [1, 2, 3, 4, 5, 6, 7]

    对应的下标为 0,1,2,3,4,5,6

    如何将一个数组变成一个堆

    从最后一个有孩子节点 (节点下标为M)的元素开始,先将以该元素为根节点的子树变成一个堆,然后下标减 1,再将下标为M1的节点所对应的子树变成堆,依次递减进行,直到根节点。示例如下(以小根堆为例):

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/03.png

    • 找到第一个有孩子节点的,由上图容易知道,第一个有孩子节点的值为5,其下标为3,它对应的子树为:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/04.png

      如果需要将上面的子树变成一颗小根堆,只需要将51对应节点互换位置即可(不能和2换,如果和22>1不符合小根堆的性质),换完之后的结果为:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/05.png

    • 然后将下标减1,即为2,对应的元素为6,现在也需要将其对应的子树变成一颗小根堆,即需要将62互换,互换之后的结果为:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/08.png

    • 继续将下标减1,然后进行相同的操作,很容易知道将71互换位置,互换之后的结果为:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/09.png

    从上面的图可以知道,当17互换之后,子树[7,2,5]不是一颗小根堆了,那怎么办?再将子树[7,2,5]变成小根堆即可,所以再进行一次小根堆操作即可,将7, 2进行互换即可,交换之后的结果为:

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/10.png

    在上述的树中,交换过程已经完成了,但是如果节点的数目非常大,或者说下面的子树可能又出现了不符合小根堆的情况怎么办?那就一直循环走下去,直到没有孩子节点或者已经满足小根堆的性质。我们将上述操作定义为下沉(down)操作

    • 最后再对节点8进行相关操作,得到的结果如下:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/11.png

    • 再对子树进行堆化(heapify)操作:

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/12.png

    • 在进行堆化,得到最终结果

      https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/13.png

    以上就是将一个完全二叉树变成一颗小根堆的过程,大根堆的过程非常类似,即将较大的数作为父亲节点即可,就不在进行陈述~~~

    代码实现

    首先我们清楚堆的存储数据结构是数组,那么就有对应的下标,那么父亲节点和孩子节点的位置对应关系是什么呢?

    如果父亲节点的下标为i那么它对应的做孩子的下标为2i+1对应右孩子的下标为2i+2,如果孩子节点的下标为i,则对应的父亲节点的下标为i12,可以参考下图进行计算。

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/14.png

    根据上面的分析我们可以知道,如果想把一个数组变成一个堆,那么需要从最后一个有孩子的节点开始进行下沉操作,直到根节点。

    下沉操作的具体步骤,如果是小根堆,就将当前节点的值和左右孩子节点进行比较,如果当前节点V比左右孩子节点都小的话则停止,或者当前节点没有孩子节点也停止,如果子节点的值比当前节点小,则需要选取子节点中较小的值,然后和当前节点互换,然后在置换后对V重新进行上述操作。如果是大根堆则选取孩子节点中较大的值。具体代码如下:

    #include
    #include
    #include
    #include
    #define True 1
    #define False 0
    #define NUM 9
    #define MAX_VALUE 100
    void swap(int * array, int idx1, int idx2) {
    /*交换数组的两个元素*/
    int t = array[idx1];
    array[idx1] = array[idx2];
    array[idx2] = t;
    }
    void down(int * array, int length, int start, int big=False) {
    /* array 是堆数组,length 为数组的长度,start 是当前需要下沉的元素的下标,big 表示是否为大根堆 */
    while(start < length) {
    int left_child = 2 * start + 1;
    int right_child = 2 * start + 2;
    int idx = left_child;
    if (left_child > length - 1)
    /* 如果做孩子对应的下标超出数组元素个数则需要跳出循环 */
    break;
    if(right_child < length) {
    if (!big) {
    if(array[right_child] < array[left_child])
    idx = right_child;
    } else {
    if(array[right_child] > array[left_child])
    idx = right_child;
    }
    }
    if(!big) {
    if(array[start] > array[idx]){
    swap(array, idx, start);
    start = idx;
    } else{
    break;
    }
    } else {
    if(array[start] < array[idx]){
    swap(array, idx, start);
    start = idx;
    } else{
    break;
    }
    }
    }
    }
    /* 定义对整个数组的堆化过程 */
    void heapify(int * array, int length, int start=-2, int big=True) {
    /* start 的默认值为 -2 表示从最后一个有孩子节点的元素开始 */
    if(start == -1)
    /* 最后一个元素的下标为0 再减1则为-1 在这里设置递归出口*/
    return;
    if (start == -2) {
    start = (length - 2) / 2;
    }
    down(array, length, start, big);
    /* 当前元素进行下沉操作之后 再对他的上一个元素进行 下沉操作*/
    heapify(array, length, start - 1, big);
    }
    int main() {
    int data[NUM] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
    heapify(data, NUM);
    for(int i=0; i < NUM; i++) {
    printf("%d ", data[i]);
    }
    return 0;
    }
    /* output : 8 7 6 3 4 5 2 1 0 */

    堆的应用

    堆排序

    对于数组array = {0, 7, 3, 5, 1, 6, 2, 4, 8}对应的堆如下图所示,如果想使用堆排序,首先需要将数组变成一个堆,使用上面的heapify函数即可。

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/15.png

    先将数组变成大根堆,变换过程如下图所示:

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/19.png

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/20.png

    最终得到的大根堆如图7所示。得到一个大根堆之后怎么排序呢?我们知道对于一个大根堆来说,根节点的孩子节点都比他小,所以根节点一定是堆中值最大的元素,现在将根节点和最后一个节点互换位置,置换后的结果如下图所示:

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/21.png

    现在已经将数组中最大的元素放到数组的最后一个元素了,现在我们将最后一个元素从堆中剔除,对于这个操作我们只需要将堆的长度减1,对于存储在数组中的数据不需要改动,即现在堆中的元素只有{0, 7, 6, 5, 1, 3, 2, 4},但是实际在数组中的元素仍然为{0, 7, 6, 5, 1, 3, 2, 4, 8}。现在对元素0进行下沉操作。操作过程如下图所示:

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/22.png

    最终会得到结果V,因为元素8已经不在堆中了,因此不会和8置换,这样堆中最大的元素就在数组最后一个位置,再对剩余元素组成的堆执行上述操作,又会将其中最大的元素放在倒数第二个位置,再对根节点的元素进行下沉操作,如此进行下去就可以排好序了。进行过程如下图所示:

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/25.png

    https://gitee.com/Chang-LeHung/articls-images/raw/master/heap/26.png

    最后再将最后得到的堆(只有两个元素)互换位置即可,这样就是得到一个有序的数组了。从上述过程我们发现,如果初始堆是大根堆我们得到的是升序数组,如果是小根堆的话得到的将是降序数组。

    堆排序代码实现

    从上述分析过程可以直到每次置换根节点和堆最后一个节点,然后将堆长度减1,然后堆根节点的元素进行下沉操作即可,如此进行下去,直到最后堆中只有一个元素,则排序完成。具体代码如下:

    #include
    #include
    #include
    #define True 1
    #define False 0
    #define NUM 9
    void swap(int * array, int idx1, int idx2) {
    /* 交换数组的两个元素 */
    int t = array[idx1];
    array[idx1] = array[idx2];
    array[idx2] = t;
    }
    void down(int * array, int length, int start, int big=False) {
    while(start < length) {
    int left_child = 2 * start + 1;
    int right_child = 2 * start + 2;
    int idx = left_child;
    if (left_child > length - 1)
    break;
    if(right_child < length) {
    if (!big) {
    if(array[right_child] < array[left_child])
    idx = right_child;
    } else {
    if(array[right_child] > array[left_child])
    idx = right_child;
    }
    }
    if(!big) {
    if(array[start] > array[idx]){
    swap(array, idx, start);
    start = idx;
    } else{
    break;
    }
    } else {
    if(array[start] < array[idx]){
    swap(array, idx, start);
    start = idx;
    } else{
    break;
    }
    }
    }
    }
    void heapify(int * array, int length, int start=-2, int big=True) {
    if(start == -1)
    return;
    if (start == -2) {
    start = (length - 2) / 2;
    }
    down(array, length, start, big);
    heapify(array, length, start - 1, big);
    }
    void heap_sort(int * array, int length, bool reverse=False) {
    for(int i = length - 1; i >=0; i--) {
    swap(array, i, 0);
    down(array, i, 0, !reverse);
    }
    }
    int main() {
    int data[NUM] = {0, 7, 3, 5, 1, 6, 2, 4, 8};
    heapify(data, NUM);
    for(int i=0; i < NUM; i++) {
    printf("%d ", data[i]);
    }
    heap_sort(data, NUM);
    printf("\nAfter sorted !!!\n");
    for(int i=0; i < NUM; i++) {
    printf("%d ", data[i]);
    }
    return 0;
    }

    堆的时间复杂度

    从上面堆的结构容易知道,堆是一种二叉树结构,如果当前堆中有元素N个,则向堆中插入一个元素的时间复杂度为O(log(N)),它在下沉的时候,数据交换的次数不会大于log(N)。如果一个数组(堆)中有N个元素,那么它需要进行N次,根元素和堆的最后一个元素进行交换,然后数据进行下沉,每一次下沉的数据交换次数不会log(N),而且越往后交换的次数距离log(N)越大,即交换的次数越来越少,因此堆排序的最大时间复杂度为O(Nlog(N))

    优先级队列

    队列就是一种先进先出的数据结构,优先级队列就是在队列中优先级最高的先出。如果用一个大于0的整型数字来代表,数据的优先级的话(即数字越小优先级越高)我们可以用小根堆来处理数据,因为小根堆的堆顶元素一定是一个堆中最小的,那么每次进行pop操作,即从队列中拿出一个元素的时候就可以将堆顶的元素和最后一个元素进行交换,然后再将新的堆顶的元素进行下沉操作即可,如果有一个新的元素进行堆,那么它可以现在放在数组最末的位置,然后进行上浮操作,其实这个操作很简单原理和下沉操作一模一样,连停止条件都差不多,他们正好相反,下沉的操作当当前节点是叶子节点或者小于子节点的元素(对于小根堆来说)停止下沉,而上浮操作是当当前节点是根节点或者当前节点的值大于父亲节点就停下来。下面看一个具体的操作过程。

    .\images\30.png

    .\images\31.png

    上述一个简单的操作过程。其实很简单,只要掌握了下沉操作这个过程就很容易理解了,以上就是关于堆的所有内容了,如果对你有所帮助,三连~~~1


    以上就是本篇文章的所有内容了,我是LeHung,我们下期再见!!!更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

    关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

  • 相关阅读:
    使用Oracle实现完美的不重复随机数(oracle不重复随机数
    内衣洗衣机有必要买吗?口碑好的小型洗衣机测评
    咨询第三方软件测试机构报价时,软件企业应该准备什么?
    Python - Python练习题:回文数 “对称“数(整除//、模运算%、计算倍数和取位数)
    JVM-Java字节码技术笔记
    基于NodeJS 的健康饮酒管理小程序设计与实现
    qt工程文件中根据编译环境进行不同操作
    企业管理软件使用与择选时要注意五点
    虾皮规模毁约、毁 offer,操作太离谱了...
    Unity与java后端UDP通信
  • 原文地址:https://www.cnblogs.com/Chang-LeHung/p/16736346.html