• 根据内参调整图像大小


    根据内参进行图像缩放

    公式推导参考:图像缩放后相机内参如何变化的

    注意:直接调用OpenCV对图像进行resize只能改变图像shape,从相机层级出发 应该是根据内参来进行转换的(其中可能涉及 焦距 和 分辨率的调整)。

    设原始相机内参

    K 1 = [ f x 1 0 u 0 1 0 f y 1 v 0 1 0 0 1 ] K^{1}=\left[

    fx10u010fy1v01001" role="presentation" style="position: relative;">fx10u010fy1v01001
    \right] K1= fx1000fy10u01v011

    目的相机内参为:

    K 2 = [ f x 2 0 u 0 2 0 f y 2 v 0 2 0 0 1 ] K^{2}=\left[

    fx20u020fy2v02001" role="presentation" style="position: relative;">fx20u020fy2v02001
    \right] K2= fx2000fy20u02v021

    根据坐标系间的关系:

    [ X c Y c Z c 1 ] = [ R T 0 1 ] [ X w Y w Z w 1 ] \left[

    XcYcZc1" role="presentation" style="position: relative;">XcYcZc1
    \right]= \left[
    RT01" role="presentation" style="position: relative;">RT01
    \right] \left[
    XwYwZw1" role="presentation" style="position: relative;">XwYwZw1
    \right] XcYcZc1 =[R0T1] XwYwZw1

    Z c [ u v 1 ] = [ f x 0 u 0 0 0 f y v 0 0 0 0 1 0 ] [ R T 0 1 ] [ X w Y w Z w 1 ] Z_{c}\left[

    uv1" role="presentation" style="position: relative;">uv1
    \right] =\left[
    fx0u000fyv000010" role="presentation" style="position: relative;">fx0u000fyv000010
    \right] \left[
    RT01" role="presentation" style="position: relative;">RT01
    \right] \left[
    XwYwZw1" role="presentation" style="position: relative;">XwYwZw1
    \right] Zc uv1 = fx000fy0u0v01000 [R0T1] XwYwZw1

    将图像像素坐标 左乘原始相机内参的逆 再左乘目的相机内参 即可:

    [ u 2 v 2 1 ] = [ f x 2 0 u 0 2 0 f y 2 v 0 2 0 0 1 ] [ f x 1 0 u 0 1 0 f y 1 v 0 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \left[

    u2v21" role="presentation" style="position: relative;">u2v21
    \right]= \left[
    fx20u020fy2v02001" role="presentation" style="position: relative;">fx20u020fy2v02001
    \right] \left[
    fx10u010fy1v01001" role="presentation" style="position: relative;">fx10u010fy1v01001
    \right]^{-1} \left[
    u1v11" role="presentation" style="position: relative;">u1v11
    \right] u2v21 = fx2000fy20u02v021 fx1000fy10u01v011 1 u1v11

    超分辨率重建

    一文掌握图像超分辨率重建(算法原理、Pytorch实现)——含完整代码和数据

  • 相关阅读:
    Spring是如何解决循环依赖问题的及三级缓存的作用
    JSON schema(模式)
    048:mapboxGL本地上传geojson文件,在map上解析显示图形
    cpp primer笔记090-动态内存
    优选策略的自适应蚁狮优化算法-附代码
    CUDA中Occupancy相关知识
    review第1遍,220628,oozie工作流调度,数据质量监控,git,md+本地视频,
    如何解决移动端 Retina 屏(高清屏)1px 像素问题
    NumPy和Pandas中的广播
    Spring Cache缓存框架
  • 原文地址:https://blog.csdn.net/Nismilesucc/article/details/126414660