• 文献阅读(183)MAGMA


    • 题目:MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores
    • 时间:2022
    • 会议:HPCA
    • 研究机构:GIT

    本篇论文的主要贡献:
    We propose an optimization framework called Multiworkload Multi-accelerator Mapping Explorer (M3E).

    1. we develop an efficient encoding scheme to encode the search space of the mapping;
    2. we develop several modules to enable the found mapping to effectively orchestrate the data movement across sub-accelerator cores;
    3. we enable several commonly used black-box optimization algorithms and two reinforcement learning methods to be leveraged as the underlying optimization methods.

    在这里插入图片描述

    1 Related work

    在这里插入图片描述

    • PREMA develops a mapper for multi-tenant language tasks, however targeting single-core accelerator.
    • AI-MT successfully designs a mapper for homogeneous multi-core accelerators and shows performance improvement over vision and language tasks.
    • Herald targets heterogeneous multi-core accelerators and systematically analyzes the benefit of heterogeneity in dataflows across the accelerator cores for AR/VR workloads (vision tasks).

    先比于其他工作,本篇论文的优势在于:

    • Optimization-based mapper to solve the mapping problem, while prior arts focus on manually designing a mapper.
    • Both homogeneous and heterogeneous DNN accelerator platforms.
    • Diverse spectrum of models across vision, language and recommendation, which exhibit different bandwidth requirements

    2 Characteristics of DNN Models

    本篇论文将DNN模型分解为三类:视觉任务、推荐任务和自然语言处理任务:

    • Vision:最熟悉,包含了卷积、MLP和FC
    • Recommendation:MLP、attention、embedding lookup layer
    • Language:embedding lookup、MLP、RNN、attention layer

    所以实验中包括的网络有

    • Vision:ResNet、Squeezenet、Mobilenetv2、VGG16、Inception、Mnasnet、Shufflenet
    • Language:Electra、Transformer-xl、BERT、Ctrl、Reformer、Flaubert、Bart
    • Recommendation:Wide & deep learning for recommender systems、Deeprecsys: A system for optimizing end-to-end at-scale neural recommendation inference、Deep learning recommendation model for personalization and recommendation systems、Deep interest evolution network for click-through rate prediction、Deep interest network for click-through rate prediction

    在这里插入图片描述

  • 相关阅读:
    【Spring】Spring 事务和事务传播机制
    几行Python代码实现人像动漫化, 让头像独一无二
    利用python连接linux虚机并执行命令
    USB HID在系统下通信的一些总结
    SSM+中小型企业绩效管理系统毕业设计-附源码081536
    大数据技术基础实验十二:YARN实验——部署YARN集群
    Groovy之Map操作
    功率放大器驱动压电陶瓷有哪些应用
    【owt-server】m88分支和m59-server
    [Dubbo3.0.8源码解析系列]-24- Dubbo应用级服务发现
  • 原文地址:https://blog.csdn.net/tiaozhanzhe1900/article/details/125941835