思路:对所有物品建图,二分w,边权是log(w*c/a).然后判负环,一直到没有负环为止
技巧:1.乘积->加减法(log) 2.图上二分答案 3.spfa在整个图不连通情况下判负环
代码:
- #include
- #define int long long
- #define IOS ios::sync_with_stdio(false), cin.tie(0)
- #define ll long long
- #define ull unsigned long long
- #define PII pair
- #define PDI pair
- #define PDD pair
- #define debug(a) cout << #a << " = " << a << endl
- #define all(x) (x).begin(), (x).end()
- #define mem(x, y) memset((x), (y), sizeof(x))
- #define lbt(x) (x & (-x))
- #define SZ(x) ((x).size())
- #define inf 0x3f3f3f3f
- #define INF 0x3f3f3f3f3f3f3f3f
- // namespace nqio{const unsigned R = 4e5, W = 4e5; char *a, *b, i[R], o[W], *c = o, *d = o + W, h[40], *p = h, y; bool s; struct q{void r(char &x){x = a == b && (b = (a = i) + fread(i, 1, R, stdin), a == b) ? -1 : *a++;} void f(){fwrite(o, 1, c - o, stdout); c = o;} ~q(){f();}void w(char x){*c = x;if (++c == d) f();} q &operator >>(char &x){do r(x);while (x <= 32); return *this;} q &operator >>(char *x){do r(*x); while (*x <= 32); while (*x > 32) r(*++x); *x = 0; return *this;} template
q&operator>>(t &x){for (r(y),s = 0; !isdigit(y); r(y)) s |= y == 45;if (s) for (x = 0; isdigit(y); r(y)) x = x * 10 - (y ^ 48); else for (x = 0; isdigit(y); r(y)) x = x * 10 + (y ^ 48); return *this;} q &operator <<(char x){w(x);return *this;}q &operator<< (char *x){while (*x) w(*x++); return *this;}q &operator <<(const char *x){while (*x) w(*x++); return *this;}template q &operator<< (t x) {if (!x) w(48); else if (x < 0) for (w(45); x; x /= 10) *p++ = 48 | -(x % 10); else for (; x; x /= 10) *p++ = 48 | x % 10; while (p != h) w(*--p);return *this;}}qio; }using nqio::qio; - using namespace std;
- const int N = 4010, M = 1e6 + 10;
- const long double eps = 1e-10;
- int n, m;
- int h[N], v[M], to[M], tot;
- int a[N], b[N], c[N], d[N];
- bool vis[N];
- long double w[M], dis[N];
- int cnt[N]; //cnt[x]表示从1到x的最短路径包含的边数,若cnt[x]>=n,则由抽屉原理判定为有负环
- void add(int a, int b, long double c) {
- w[++tot] = c, v[tot] = b, to[tot] = h[a], h[a] = tot;
- }
- bool check(long double x) {
- for (int i = 0; i <= 1500; ++i) dis[i] = 0, vis[i] = 0, h[i] = 0, cnt[i] = 0;
- tot = 0;
- for (int i = 1; i <= m; ++i) {
- long double ww = log(a[i]) - log(c[i]) - log(x);
- add(b[i], d[i], ww);
- }
- queue<int> q;
- for (int i = 1; i <= n; ++i) q.emplace(i);
- while (q.size()) {
- int x = q.front(); q.pop();
- vis[x] = 0;
- for (int i = h[x]; i; i = to[i]) {
- int y = v[i];
- long double z = w[i];
- if (dis[y] > dis[x] + z) {
- dis[y] = dis[x] + z;
- cnt[y] = cnt[x] + 1;
- if (cnt[y] >= n) return false;
- if (!vis[y]) q.emplace(y), vis[y] = 1;
- }
- }
- }
- return true;
- }
- signed main() {
- IOS;
- cin >> n >> m;
- for (int i = 1; i <= m; ++i) cin >> a[i] >> b[i] >> c[i] >> d[i];
- long double l = 0, r = 1;
- for (int i = 1; i <= 100; ++i) {
- long double mid = (l + r) / 2;
- if (check(mid)) l = mid;
- else r = mid;
- }
- cout << fixed << setprecision(20);
- cout << l << '\n';
- }
思路:先考虑至少有k个bit的情况,假设为
,有
,然后设
为恰好有k个bit的情况,那么有
,由二项式反演可得
,然后变化一些卷积即可.(不会卷qwq)
这里我详细讲一下,f(k)的求法.

技巧:"恰好"->容斥, 求固定有k个的方法.
思路:构造即可
代码:
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #include
- #define IOS ios::sync_with_stdio(false), cin.tie(0)
- #define int long long
- #define ll long long
- #define ull unsigned long long
- #define PII pair
- #define PDI pair
- #define PDD pair
- #define debug(a) cout << #a << " = " << a << endl
- #define all(x) (x).begin(), (x).end()
- #define mem(x, y) memset((x), (y), sizeof(x))
- #define lbt(x) (x & (-x))
- #define SZ(x) ((x).size())
- #define wtn(x) wt(x), printf("\n")
- #define wtt(x) wt(x), printf(" ")
- #define inf 0x3f3f3f3f
- #define INF 0x3f3f3f3f3f3f3f3f
- #define MOD 1000000007
- #define eps 1e-8
- int T = 1;
- using namespace std;
- inline int rd() {
- int x = 0, y = 1; char c = getchar();
- while (!isdigit(c)) { if (c == '-') y = -1; c = getchar(); }
- while (isdigit(c)) { x = (x << 3) + (x << 1) + (c ^ 48); c = getchar(); }
- return x *= y;
- }
- inline void wt(int x) {
- if (x < 0)x = -x, putchar('-'); ll sta[100], top = 0;
- do sta[top++] = x % 10, x /= 10; while (x);
- while (top) putchar(sta[--top] + '0');
- }
- void solve() {
- int n = rd(), block = ceil(sqrt(n));
- for (int i = 1; i * block <= n; ++i)
- for (int j = i * block; j >= (i - 1) * block + 1; --j) wtt(j);
- int k = n / block;
- for (int i = n; i >= k * block + 1; --i) wtt(i);
- puts("");
- }
- signed main() {
- // IOS;
- // cin >> T;
- T = rd();
- for (int i = 1; i <= T; ++i) { solve();}
- }
思路:线性回归,注意精度
代码:
- #include
- #define IOS ios::sync_with_stdio(false), cin.tie(0)
- #define int long long
- #define ll long long
- #define ull unsigned long long
- #define PII pair
- #define PDI pair
- #define PDD pair
- #define debug(a) cout << #a << " = " << a << endl
- #define all(x) (x).begin(), (x).end()
- #define mem(x, y) memset((x), (y), sizeof(x))
- #define lbt(x) (x & (-x))
- #define SZ(x) ((x).size())
- #define wtn(x) wt(x), printf("\n")
- #define wtt(x) wt(x), printf(" ")
- #define inf 0x3f3f3f3f
- #define INF 0x3f3f3f3f3f3f3f3f
- #define MOD 1000000007
- #define eps 1e-8
- int T = 1;
- using namespace std;
- inline int rd() {
- int x = 0, y = 1; char c = getchar();
- while (!isdigit(c)) { if (c == '-') y = -1; c = getchar(); }
- while (isdigit(c)) { x = (x << 3) + (x << 1) + (c ^ 48); c = getchar(); }
- return x *= y;
- }
- inline void wt(int x) {
- if (x < 0)x = -x, putchar('-'); ll sta[100], top = 0;
- do sta[top++] = x % 10, x /= 10; while (x);
- while (top) putchar(sta[--top] + '0');
- }
- const int N = 1e6 + 10;
- int n;
- long double x[N], y[N], xy[N], d[N], dd[N], s[N];
- void solve() {
- long double b, a, avrx = 0, avry = 0, sumx = 0, sumy = 0;
- // n = rd();
- cin >> n;
- for (int i = 1; i <= n; ++i) cin >> y[i], sumx += i, sumy += y[i];
- avrx = sumx / n, avry = sumy / n;
- long double sumxy = 0, sumxx = 0;
- for (int i = 1; i <= n; ++i) sumxy += i * y[i], sumxx += i * i;
- b = (sumxy - n * avrx * avry) / (sumxx - n * avrx * avrx);
- a = avry - b * avrx;
- long double ans = 0;
- for (int i = 1; i <= n; ++i) {
- long double x = b * i + a - y[i];
- ans += x * x;
- }
- cout << fixed << setprecision(20);
- cout << ans << endl;
- }
- signed main() {
- IOS;
- cin >> T;
- for (int i = 1; i <= T; ++i) { solve();}
- }
思路:f[i][j][k]表示前i个b字符串匹配了前j个a字符串,还剩下k个左括号没匹配的情况
f[i][j][k] -> f[i+1][j+(s[j+1]=='(')][k+1]
f[i][j][k] -> f[i+1][j+(s[j+1]==')')][k-1]
技巧:两个序列->lcs
代码:
- #include
- #define int long long
- #define IOS ios::sync_with_stdio(false), cin.tie(0)
- #define ll long long
- #define ull unsigned long long
- #define PII pair
- #define PDI pair
- #define PDD pair
- #define debug(a) cout << #a << " = " << a << endl
- #define all(x) (x).begin(), (x).end()
- #define mem(x, y) memset((x), (y), sizeof(x))
- #define lbt(x) (x & (-x))
- #define SZ(x) ((x).size())
- #define inf 0x3f3f3f3f
- #define INF 0x3f3f3f3f3f3f3f3f
- namespace nqio{const unsigned R = 4e5, W = 4e5; char *a, *b, i[R], o[W], *c = o, *d = o + W, h[40], *p = h, y; bool s; struct q{void r(char &x){x = a == b && (b = (a = i) + fread(i, 1, R, stdin), a == b) ? -1 : *a++;} void f(){fwrite(o, 1, c - o, stdout); c = o;} ~q(){f();}void w(char x){*c = x;if (++c == d) f();} q &operator >>(char &x){do r(x);while (x <= 32); return *this;} q &operator >>(char *x){do r(*x); while (*x <= 32); while (*x > 32) r(*++x); *x = 0; return *this;} template<typename t> q&operator>>(t &x){for (r(y),s = 0; !isdigit(y); r(y)) s |= y == 45;if (s) for (x = 0; isdigit(y); r(y)) x = x * 10 - (y ^ 48); else for (x = 0; isdigit(y); r(y)) x = x * 10 + (y ^ 48); return *this;} q &operator <<(char x){w(x);return *this;}q &operator<< (char *x){while (*x) w(*x++); return *this;}q &operator <<(const char *x){while (*x) w(*x++); return *this;}template<typename t> q &operator<< (t x) {if (!x) w(48); else if (x < 0) for (w(45); x; x /= 10) *p++ = 48 | -(x % 10); else for (; x; x /= 10) *p++ = 48 | x % 10; while (p != h) w(*--p);return *this;}}qio; }using nqio::qio;
- using namespace std;
- const int N = 1e6 + 10, MOD = 1e9 + 7;
- char s[N];
- int n, m, f[210][210][210];
- //f[i][j][k]表示前i个b字符串匹配了前j个a字符串,还剩下k个左括号没匹配的情况
- //f[i][j][k] -> f[i+1][j+(s[j+1]=='(')][k+1]
- //f[i][j][k] -> f[i+1][j+(s[j+1]==')')][k-1]
- //
- void solve() {
- qio >> n >> m >> s + 1;
- for (int i = 0; i <= m; ++i)
- for (int j = 0; j <= n; ++j)
- for (int k = 0; k <= m; ++k) f[i][j][k] = 0;
- f[0][0][0] = 1;
- for (int i = 0; i <= m; ++i)
- for (int j = 0; j <= min(i, n); ++j)
- for (int k = 0; k <= i; ++k) {
- (f[i + 1][j + (s[j + 1] == '(')][k + 1] += f[i][j][k]) %= MOD;
- if (k) (f[i + 1][j + (s[j + 1] == ')')][k - 1] += f[i][j][k]) %= MOD;
- }
- qio << f[m][n][0] << "\n";
- }
- signed main() {
- int T;
- qio >> T;
- while (T--) solve();
- }
思路:建图(i, u) -> (i + 1, v), 然后dp, f[i][j]表示到达第i个世界第j个点最大的世界是多少
代码:
- #include
- #define int long long
- #define IOS ios::sync_with_stdio(false), cin.tie(0)
- #define ll long long
- #define ull unsigned long long
- #define PII pair
- #define PDI pair
- #define PDD pair
- #define debug(a) cout << #a << " = " << a << endl
- #define all(x) (x).begin(), (x).end()
- #define mem(x, y) memset((x), (y), sizeof(x))
- #define lbt(x) (x & (-x))
- #define SZ(x) ((x).size())
- #define inf 0x3f3f3f3f
- #define INF 0x3f3f3f3f3f3f3f3f
- namespace nqio{const unsigned R = 4e5, W = 4e5; char *a, *b, i[R], o[W], *c = o, *d = o + W, h[40], *p = h, y; bool s; struct q{void r(char &x){x = a == b && (b = (a = i) + fread(i, 1, R, stdin), a == b) ? -1 : *a++;} void f(){fwrite(o, 1, c - o, stdout); c = o;} ~q(){f();}void w(char x){*c = x;if (++c == d) f();} q &operator >>(char &x){do r(x);while (x <= 32); return *this;} q &operator >>(char *x){do r(*x); while (*x <= 32); while (*x > 32) r(*++x); *x = 0; return *this;} template<typename t> q&operator>>(t &x){for (r(y),s = 0; !isdigit(y); r(y)) s |= y == 45;if (s) for (x = 0; isdigit(y); r(y)) x = x * 10 - (y ^ 48); else for (x = 0; isdigit(y); r(y)) x = x * 10 + (y ^ 48); return *this;} q &operator <<(char x){w(x);return *this;}q &operator<< (char *x){while (*x) w(*x++); return *this;}q &operator <<(const char *x){while (*x) w(*x++); return *this;}template<typename t> q &operator<< (t x) {if (!x) w(48); else if (x < 0) for (w(45); x; x /= 10) *p++ = 48 | -(x % 10); else for (; x; x /= 10) *p++ = 48 | x % 10; while (p != h) w(*--p);return *this;}}qio; }using nqio::qio;
- using namespace std;
- const int N = 1e4 + 10, M = 2e3 + 10;
- //f[i][j]表示到达第i个世界的第j个点编号最大的世界
- int n, m;
- signed main() {
- qio >> n >> m;
- vector<int> f(m + 1, -1);
- int ans = INF;
- for (int i = 1; i <= n; ++i) {
- int l;
- qio >> l;
- auto nf = f;
- f[1] = i;
- while (l--) {
- int u, v;
- qio >> u >> v;
- nf[v] = max(nf[v], f[u]);
- if (v == m && nf[v] != -1) ans = min(ans, i - nf[v] + 1);
- }
- f.swap(nf);
- }
- qio << (ans >= INF / 2 ? -1 : ans) << '\n';
- }