• 【python】OpenCV—Age and Gender Classification


    在这里插入图片描述

    1、任务描述

    性别分类和年龄分类预测

    2、网络结构

    2.1 人脸检测

    在这里插入图片描述

    在这里插入图片描述

    输出最高的 200 个 RoI,每个 RoI 7 个值,(xx,xx,score,x0,y0,x1,y1)

    2.2 性别分类

    二分类

    在这里插入图片描述

    在这里插入图片描述

    2.3 年龄分类

    按年龄区间分类 ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']

    在这里插入图片描述

    在这里插入图片描述

    3、代码实现

    先检测人脸,人脸外扩,再性别检测,再年龄检测,最后结果绘制输出

    # Import required modules
    import cv2 as cv
    import math
    import time
    import argparse
    
    
    def getFaceBox(net, frame, conf_threshold=0.7):
        frameOpencvDnn = frame.copy()
        frameHeight = frameOpencvDnn.shape[0]  # 333
        frameWidth = frameOpencvDnn.shape[1]  # 500
        blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
    
        net.setInput(blob)
        detections = net.forward()  # (1, 1, 200, 7), (xxx, xxx, confidence, x0, y0, x1, y1)
        bboxes = []
        for i in range(detections.shape[2]):  # 遍历 top 200 RoI
            confidence = detections[0, 0, i, 2]
            if confidence > conf_threshold:
                x1 = int(detections[0, 0, i, 3] * frameWidth)
                y1 = int(detections[0, 0, i, 4] * frameHeight)
                x2 = int(detections[0, 0, i, 5] * frameWidth)
                y2 = int(detections[0, 0, i, 6] * frameHeight)
                bboxes.append([x1, y1, x2, y2])
                cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
        return frameOpencvDnn, bboxes
    
    
    parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
    parser.add_argument('--input', help='Path to input image or video file. '
                                        'Skip this argument to capture frames from a camera.',
                        default="jolie.jpg")
    parser.add_argument("--device", default="cpu", help="Device to inference on")
    
    args = parser.parse_args()
    
    
    args = parser.parse_args()
    
    faceProto = "opencv_face_detector.pbtxt"
    faceModel = "opencv_face_detector_uint8.pb"
    
    ageProto = "age_deploy.prototxt"
    ageModel = "age_net.caffemodel"
    
    genderProto = "gender_deploy.prototxt"
    genderModel = "gender_net.caffemodel"
    
    MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
    ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
    genderList = ['Male', 'Female']
    
    # Load network
    ageNet = cv.dnn.readNet(ageModel, ageProto)
    genderNet = cv.dnn.readNet(genderModel, genderProto)
    faceNet = cv.dnn.readNet(faceModel, faceProto)
    
    
    if args.device == "cpu":
        ageNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
        genderNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
        faceNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)
        print("Using CPU device")
    
    elif args.device == "gpu":
        ageNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
        ageNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
    
        genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
        genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
    
        genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)
        genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)
        print("Using GPU device")
    
    
    # Open a video file or an image file or a camera stream
    cap = cv.VideoCapture(args.input if args.input else 0)
    padding = 20
    while cv.waitKey(1) < 0:
        # Read frame
        t = time.time()
        hasFrame, frame = cap.read()
        if not hasFrame:
            cv.waitKey()
            break
    
        frameFace, bboxes = getFaceBox(faceNet, frame)  # (333, 500, 3), 4 bbox
        if not bboxes:
            print("No face Detected, Checking next frame")
            continue
    
        for bbox in bboxes:  # 遍历检测出来的人脸
            # print(bbox)
            face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),
                   max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)] # 人脸外扩
    
            blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
            genderNet.setInput(blob)
            genderPreds = genderNet.forward()
            gender = genderList[genderPreds[0].argmax()]
            # array([[9.9999559e-01, 4.4012304e-06]], dtype=float32), 'Male'
            # print("Gender Output : {}".format(genderPreds))
            print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
    
            ageNet.setInput(blob)
            agePreds = ageNet.forward()
            """
            array([[5.3957672e-05, 5.3967893e-02, 9.4579268e-01, 1.0875276e-04, 5.0436443e-05, 
                    1.2142612e-05, 1.0151542e-05, 3.9845672e-06]],dtype=float32)
            """
            age = ageList[agePreds[0].argmax()]  # '(8-12)'
            # print("Age Output : {}".format(agePreds))
            # print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
    
            label = "{},{}".format(gender, age)  # Out[15]: 'Male,(8-12)'
            cv.putText(frameFace, label, (bbox[0], bbox[1]-5), cv.FONT_HERSHEY_SIMPLEX,
                       0.6, (0, 0, 255), 2, cv.LINE_AA)
            # cv.imshow("Age Gender Demo", frameFace)
            cv.imwrite("age-gender-out-{}".format(args.input), frameFace)
        print("time : {:.3f}".format(time.time() - t))
    

    4、结果展示

    输入图片

    在这里插入图片描述

    人脸检测结果

    在这里插入图片描述

    人脸外扩

    在这里插入图片描述

    输出结果

    在这里插入图片描述

    性别还是比较准的

    输入图片

    在这里插入图片描述

    输出结果

    在这里插入图片描述

    输入图片

    在这里插入图片描述

    输出结果

    在这里插入图片描述

    输入图片

    在这里插入图片描述

    输出结果

    在这里插入图片描述

    输入图片

    在这里插入图片描述

    输出结果

    在这里插入图片描述

    5、参考

    OpenCV进阶(8)性别和年龄识别

  • 相关阅读:
    虚拟内存系统【多级页表】
    单链表的相关操作(初阶)
    UE4 后期处理体积 (角色受到伤害场景颜色变淡案例)
    LeetCode 热题 C++ 79. 单词搜索
    java多线程新
    使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题
    关于#网络#的问题:办公室有A和B两台电脑,开始是A电脑网络连接异常,电脑网络连接一会儿打叉(相关搜索:交换机)
    Elasticsearch安装
    AD知识总结
    测试开发进阶——Servlet ——Servlet上传文件到服务器
  • 原文地址:https://blog.csdn.net/bryant_meng/article/details/142151756