• AI学习指南机器学习篇-深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)


    AI学习指南机器学习篇-深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)

    介绍

    深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)是一种用于解决连续动作空间中的策略优化问题的算法。它结合了深度神经网络和确定性策略梯度方法,能够有效地处理高维、连续动作空间中的强化学习问题。

    在本篇博客中,我们将详细介绍DDPG算法的原理和结构,包括其使用的深度神经网络结构、策略优化方法等。我们还将讨论连续动作空间中的策略优化问题,并通过示例来说明DDPG算法如何应用于解决这些问题。

    原理

    DDPG算法基于确定性策略梯度(Deterministic Policy Gradient,DPG)算法和深度神经网络。它的目标是学习一个确定性策略,使得在给定状态下,能够输出最优的动作。

    DDPG算法使用了两个神经网络:一个用于学习动作价值函数,即Q值函数,另一个用于学习策略。同时,它还使用了经验回放和目标网络的技巧,以提高算法的稳定性和收敛性。

    结构

    深度神经网络结构

    在DDPG算法中,通常使用两个神经网络:一个用于学习动作价值函数(Q值函数),另一个用于学习策略。这两个神经网络通常采用深度神经网络结构,以处理高维、连续的状态和动作空间。

    具体来说,Q值函数网络一般采用多层感知器(Multi-Layer Perceptron,MLP)结构,输入为状态和动作,输出为对应的动作价值。而策略网络也通常采用MLP结构,输入为状态,输出为根据当前状态选择的动作。

    策略优化方法

    在DDPG算法中,策略优化通常采用确定性策略梯度方法。具体来说,通过最大化动作价值函数(Q值函数)来更新策略网络的参数,从而使得策略网络能够输出接近最优动作的动作。

    在训练过程中,通常采用经验回放的技巧,即将过去的经验存储在经验池中,并随机抽样进行训练。同时,为了增强算法的稳定性和收敛性,通常采用目标网络的技巧,即使用定期更新的目标网络来计算目标Q值,减少Q值函数的波动。

    讨论

    连续动作空间中的策略优化问题

    在传统的强化学习问题中,通常假设动作空间是离散的,即只有有限个动作可供选择。然而,在许多实际问题中,动作空间是连续的,即可以取无限个实数值。

    连续动作空间带来的挑战在于,传统的策略优化方法很难直接应用于连续动作空间。例如,对于基于策略梯度的方法,其在连续动作空间中很难直接计算梯度。

    DDPG算法通过结合深度神经网络和确定性策略梯度方法,能够有效地解决连续动作空间中的策略优化问题。其使用深度神经网络来近似策略和值函数,使用确定性策略梯度方法来更新策略,从而克服了传统方法在连续动作空间中的限制。

    示例

    为了更好地理解DDPG算法在连续动作空间中的应用,我们以一个典型的控制问题为例:倒立摆(Inverted Pendulum)。

    倒立摆是一种经典的控制问题,其目标是通过对倒立摆施加力来实现使其保持直立。在这个问题中,动作空间是一个连续的实数值,代表对倒立摆施加的力的大小。由于动作空间的连续性,传统的策略优化方法很难直接应用于该问题。

    通过使用DDPG算法,我们可以构建一个深度神经网络来学习倒立摆的策略和值函数。通过不断地与环境交互,更新神经网络的参数,最终可以得到一个能够使倒立摆保持直立的策略。

    总结

    在本篇博客中,我们详细介绍了深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法的原理和结构,讨论了连续动作空间中的策略优化问题,并通过示例说明了DDPG算法在解决这些问题中的应用。

    DDPG算法通过结合深度神经网络和确定性策略梯度方法,能够有效地处理高维、连续动作空间中的强化学习问题。它为解决实际中许多复杂的控制问题提供了新的思路和方法。

    希望本篇博客能够帮助读者更好地理解DDPG算法,并在实际问题中应用它来解决连续动作空间中的策略优化问题。

  • 相关阅读:
    条件变量condition_variable实现线程同步
    【光学】基于matlab GUI矩阵法和等效界面法光学薄膜对反射率影响【含Matlab源码 2102期】
    【性能基石之IO~~~Linux操作系统相关知识体系补充&虚拟文件系统&文件描述符&PageCache内核缓存页】
    Golang Gorm 一对多 关联模式 Association + Append 添加关联 Association + Replace
    003 后台系统-搭建前端环境
    第十二次CCF计算机软件能力认证
    重新整理 .net core 实践篇 ———— linux上排查问题 [外篇]
    2022牛客多校八 F-Longest Common Subsequence(思维)
    react 或者 vue,如何做 SEO 优化?
    mmap内核实现及物理内存组织结构
  • 原文地址:https://blog.csdn.net/zhaopeng_yu/article/details/140726491