• 李宏毅2023机器学习作业HW06解析和代码分享


    ML2023Spring - HW6 相关信息:
    课程主页
    课程视频
    Sample code
    HW06 视频
    HW06 PDF

    个人完整代码分享: GitHub | Gitee | GitCode

    P.S. HW06 是在 Judgeboi 上提交的,出于学习目的这里会自定义两个度量的函数,不用深究,遵循 Suggestion 就可以达成学习的目的。

    每年的数据集 size 和 feature 并不完全相同,但基本一致,过去的代码仍可用于新一年的 Homework。

    任务目标(seq2seq)

    • Anime face generation: 动漫人脸生成
      • 输入:随机数
      • 输出:动漫人脸
      • 实现途径:扩散模型
      • 目标:生成 1000 张动漫人脸图像

    性能指标(FID)

    • FID (Frechet Inception Distance)
      用于衡量真实图像与生成图像之间特征向量的距离,计算步骤:
      FID 计算

      1. 使用 Inception V3 模型分别提取真实图像生成图像的特征(使用最后一层卷积层的输出)
      2. 计算特征的均值和方差
      3. 计算 Frechet 距离
    • AFD (Anime face detection) rate

      用于衡量动漫人脸检测性能,用来检测提交的文件中有多少动漫人脸。

    不过存在一个问题:代码中没有给出 FID 和 AFD 的计算,所以我们需要去自定义计算的函数用于学习。

    安装环境

    AFD rate 的计算使用预训练的 Haar Cascade 文件。anime_face_detector 库在 cuda 版本过新的时候,需要处理的步骤过多,不方便复现

    安装 pytorch-fidultralytics,并下载预训练的 YOLOv8 模型(源自 Github)。

    !pip install pytorch-fid ultralytics
    !wget https://github.com/MagicalKyaru/yolov8_animeface/releases/download/v1/yolov8x6_animeface.pt
    

    定义函数计算 FID 和 AFD rate

    这里我们定义在 Inference 之后。

    import os
    import cv2
    from pytorch_fid import fid_score
    
    def calculate_fid(real_images_path, generated_images_path):
        """
        Calculate FID score between real and generated images.
        
        :param real_images_path: Path to the directory containing real images.
        :param generated_images_path: Path to the directory containing generated images.
        :return: FID score
        """
        fid = fid_score.calculate_fid_given_paths([real_images_path, generated_images_path], batch_size=50, device='cuda', dims=2048)
        return fid
    
    def calculate_afd(generated_images_path, save=True):
        """
        Calculate AFD (Anime Face Detection) score for generated images.
        
        :param generated_images_path: Path to the directory containing generated images.
        :return: AFD score (percentage of images detected as anime faces)
        """
        results = yolov8_animeface.predict(generated_images_path, save=save, conf=0.8, iou=0.8, imgsz=64)
    
        anime_faces_detected = 0
        total_images = len(results)
    
        for result in results:
            if len(result.boxes) > 0:
                anime_faces_detected += 1
    
        afd_score = anime_faces_detected / total_images
        return afd_score
    
    # Calculate and print FID and AFD with optional visualization
    yolov8_animeface = YOLO('yolov8x6_animeface.pt')
    real_images_path = './faces/faces'  # Replace with the path to real images
    fid = calculate_fid(real_images_path, './submission')
    afd = calculate_afd('./submission')
    print(f'FID: {fid}')
    print(f'AFD: {afd}')
    

    注意,使用当前函数只是为了有个度量,单以当前的YOLOv8预训练模型为例,很可能当前模型只学会了判断两个眼睛的区域是 face,但没学会判断三个眼睛图像的不是 face,这会导致 AFD 实际上偏高,所以只能作学习用途。

    数据解析

    • 训练数据:71,314 动漫人脸图片

      数据集下载链接:https://www.kaggle.com/datasets/b07202024/diffusion/download?datasetVersionNumber=1,也可以通过命令行进行下载:kaggle datasets download -d b07202024/diffusion

      注意下载完之后需要进行解压,并对应修改 Sample codeTraining Hyper-parameters 中的路径 path

    数据下载(kaggle)

    To use the Kaggle API, sign up for a Kaggle account at https://www.kaggle.com. Then go to the ‘Account’ tab of your user profile (https://www.kaggle.com//account) and select ‘Create API Token’. This will trigger the download of kaggle.json, a file containing your API credentials. Place this file in the location ~/.kaggle/kaggle.json (on Windows in the location C:\Users\\.kaggle\kaggle.json - you can check the exact location, sans drive, with echo %HOMEPATH%). You can define a shell environment variable KAGGLE_CONFIG_DIR to change this location to $KAGGLE_CONFIG_DIR/kaggle.json (on Windows it will be %KAGGLE_CONFIG_DIR%\kaggle.json).

    -- Official Kaggle API

    替换为你自己的用户名,https://www.kaggle.com//account,然后点击 Create New API Token,将下载下来的文件放去应该放的位置:

    • Mac 和 Linux 放在 ~/.kaggle
    • Windows 放在 C:\Users\\.kaggle
    pip install kaggle
    # 你需要先在 Kaggle -> Account -> Create New API Token 中下载 kaggle.json
    # mv kaggle.json ~/.kaggle/kaggle.json
    kaggle datasets download -d b07202024/diffusion
    unzip diffusion
    

    Gradescope

    这一题我们先处理可视化部分,这个有助于我们理解自己的模型(毕竟没有官方的标准来评价生成的图像好坏)。

    Question 1

    采样5张图像并展示其渐进生成过程,简要描述不同时间步的差异。

    修改 GaussianDiffusion 类中的 p_sample_loop() 方法:

    class GaussianDiffusion(nn.Module):
        
        ...
        
        # Gradescope – Question 1
        @torch.no_grad()
        def p_sample_loop(self, shape, return_all_timesteps = False, num_samples=5, save_path='./Q1_progressive_generation.png'):
            batch, device = shape[0], self.betas.device
    
            img = torch.randn(shape, device = device)
            imgs = [img]
            samples = [img[:num_samples]]  # Store initial noisy samples
    
            x_start = None
            
            ###########################################
            ## TODO: plot the sampling process ##
            ###########################################
            for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
                img, x_start = self.p_sample(img, t)
                imgs.append(img)
                if t % (self.num_timesteps // 20) == 0:
                    samples.append(img[:num_samples])  # Store samples at specific steps
            
            ret = img if not return_all_timesteps else torch.stack(imgs, dim = 1)
    
            ret = self.unnormalize(ret)
            self.plot_progressive_generation(samples, len(samples)-1, save_path=save_path)
            return ret
        
        def plot_progressive_generation(self, samples, num_steps, save_path=None):
            fig, axes = plt.subplots(1, num_steps + 1, figsize=(20, 4))
            for i, sample in enumerate(samples):
                axes[i].imshow(vutils.make_grid(sample, nrow=1, normalize=True).permute(1, 2, 0).cpu().numpy())
                axes[i].axis('off')
                axes[i].set_title(f'Step {i}')
            if save_path:
                plt.savefig(save_path)
            plt.show()
    

    表现如下(基于 Sample code):
    在这里插入图片描述

    简述去噪过程

    去噪过程主要是指从完全噪声的图像开始,通过逐步减少噪声,最终生成一个清晰的图像。去噪过程的简单描述:

    1. 初始步骤(噪声):
      在初始步骤中,图像是纯噪声,此时的图像没有任何结构和可辨识的特征,看起来为随机的像素点。
    2. 中间步骤:
      模型通过多个时间步(Timesteps)将噪声逐渐减少,每一步都试图恢复更多的图像信息。
      • 早期阶段,图像中开始出现一些模糊的结构和形状。虽然仍然有很多噪声,但可以看到一些基本轮廓和大致的图像结构。
      • 中期阶段,图像中的细节开始变得更加清晰。面部特征如眼睛、鼻子和嘴巴开始显现,噪声显著减少,图像的主要轮廓和特征逐渐清晰。
    3. 最终步骤(完全去噪):
      在最后的步骤中,噪声被最大程度地去除,图像变清晰。

    Question 2

    DDPM(去噪扩散概率模型)在推理过程中速度较慢,而DDIM(去噪扩散隐式模型)在推理过程中至少比DDPM快10倍,并且保留了质量。请分别描述这两种模型的训练、推理过程和生成图像的差异,并简要解释为什么DDIM更快。

    参考文献:

    下面是个简单的叙述,如果有需要的话,建议阅读原文进行理解。

    训练/推理过程的差异

    DDPM

    • DDPM 的训练分为前向扩散和反向去噪两个部分:
      前向扩散逐步给图像添加噪声。
      反向去噪使用 U-Net 模型,通过最小化预测噪声和实际噪声的差异来训练,逐步去掉这些噪声。
      • Ho et al., 2020, To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ with group normalization throughout.
    • 但需要处理大量的时间步(比如1000步),训练时间相对DDIM来说更长。
      • Ho et al., 2020, We set T = 1000 for all experiments …

    DDIM

    • DDIM 的训练与 DDPM 类似,但使用非马尔可夫的确定性采样过程。
      • Song et al., 2020, We present denoising diffusion implicit models (DDIMs)…a non-Markovian deterministic sampling process

    生成图像的差异

    DDPM

    • 生成的图像质量很高,每一步去噪都会使图像变得更加清晰,但步骤多,整个过程比DDIM慢。

    DDIM

    • 步骤少,生成速度快,且生成的图像质量与 DDPM 相当。
      • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps …

    为什么 DDIM 更快

    1. 步骤更少:DDIM 在推理过程中减少了很多步骤。例如,DDPM 可能需要 1000 步,而 DDIM 可能只需要 50-100 步。
      • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps, which is a 10× to 50× speed up compared to the original DDPM. Even though DDPM could also achieve reasonable sample quality with 100× steps, DDIM requires much fewer steps to achieve this; on CelebA, the FID score of the 100 step DDPM is similar to that of the 20 step DDIM.
    2. 非马尔可夫采样
      • Song et al., 2020, These non-Markovian processes can correspond to generative processes that are deterministic, giving rise to implicit models that produce high quality samples much faster.
    3. 效率:确定性的采样方式使得 DDIM 能更快地生成高质量的图像。
      • Song et al., 2020, For DDIM, the generative process is deterministic, and x 0 x_0 x0 would depend only on the initial state x T x_T xT .

    Baselines

    实际上如果时间充足,出于学习的目的,可以对超参数或者模型架构进行调整以印证自身的想法。这篇文章是最近重新拾起的,所以只是一个简单的概述帮助理解。

    另外,当前 FID 数的度量数量级和 Baseline 是不一致的,这里因为时间原因不做度量标准的还原,完成 Suggestion 和 Gradescope 就足够达成学习的目的了。

    Simple baseline (FID ≤ 30000, AFD ≥ 0)

    • 运行所给的 sample code

    Medium baseline (FID ≤ 12000, AFD ≥ 0.4)

    • 简单的数据增强
      T.RandomHorizontalFlip(), T.RandomRotation(10), T.ColorJitter(brightness=0.25, contrast=0.25)
    • 将 timesteps 变成1000(遵循 DDPM 原论文的设置)
      • 注意,设置为 1000 的话在 trainer.inference() 时很可能会遇到 CUDA out of memory,这里对 inference() 进行简单的修改。
        实际效果是针对 self.ema.ema_model.sample() 减少 batch_size 至 100,不用过多细究。
        def inference(self, num=1000, n_iter=10, output_path='./submission'):
                if not os.path.exists(output_path):
                    os.mkdir(output_path)
                with torch.no_grad():
                    for i in range(n_iter):
                        batches = num_to_groups(num // n_iter, 100)
                        all_images = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches))[0]
                        
                        for j in range(all_images.size(0)):
                            torchvision.utils.save_image(all_images[j], f'{output_path}/{i * 100 + j + 1}.jpg')
        
    • 将 train_num_step 修改为 20000

    Strong baseline (FID ≤ 10000, AFD ≥ 0.5)

    • Model Arch
      看了下HW06 对应的视频,从叙述上看应该指的是调整超参数:channeldim_mults
      这里简单的将 channel 调整为 32。
      dim_mults 初始为 (1, 2, 4),增加维度改成 (1, 2, 4, 8) 又或者改变其中的值都是允许的。
    • Varience Scheduler
      这部分可以自己实现,下面给出比较官方的代码供大家参考比对:使用 denoising-diffusion-pytorch 中的 cosine_beta_schedule(),对应的还有 sigmoid_beta_schedule()
      sigmoid_beta_schedule() 在训练时更适合用在分辨率大于 64x64 的图像上,当前训练集图像的分辨率为 96x96。
      增加和修改的部分代码:
    def cosine_beta_schedule(timesteps, s = 0.008):
        """
        cosine schedule
        as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
        """
        steps = timesteps + 1
        t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps
        alphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2
        alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
        betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
        return torch.clip(betas, 0, 0.999)
    
    def sigmoid_beta_schedule(timesteps, start = -3, end = 3, tau = 1, clamp_min = 1e-5):
        """
        sigmoid schedule
        proposed in https://arxiv.org/abs/2212.11972 - Figure 8
        better for images > 64x64, when used during training
        """
        steps = timesteps + 1
        t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps
        v_start = torch.tensor(start / tau).sigmoid()
        v_end = torch.tensor(end / tau).sigmoid()
        alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start)
        alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
        betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
        return torch.clip(betas, 0, 0.999)
    
    class GaussianDiffusion(nn.Module):
        def __init__(
    		...
            beta_schedule = 'linear',
            ...
        ):
            ...
            if beta_schedule == 'linear':
                beta_schedule_fn = linear_beta_schedule
            elif beta_schedule == 'cosine':
                beta_schedule_fn = cosine_beta_schedule
            elif beta_schedule == 'sigmoid':
                beta_schedule_fn = sigmoid_beta_schedule
            else:
                raise ValueError(f'unknown beta schedule {beta_schedule}')
            ...
            
    ...
    beta_schedule = 'cosine' # 'sigmoid'
    ...
    
    

    Boss baseline(FID ≤ 9000, AFD ≥ 0.6)

    • StyleGAN
      仅供参考,从实验结果上来看,扩散模型生成的图像视觉上更清晰,而 StyleGAN 的风格更一致。
      当然,同样存在设置出现问题的情况(毕竟超参数直接延续了之前的设定。Anyway,希望对你有所帮助)
    Strong (DDPM)Boss (StyleGAN)
    strongboss
    class StyleGANTrainer(object):
        def __init__(
            self, 
            folder, 
            image_size, 
            *,
            train_batch_size=16, 
            gradient_accumulate_every=1, 
            train_lr=1e-3, 
            train_num_steps=100000, 
            ema_update_every=10, 
            ema_decay=0.995, 
            save_and_sample_every=1000, 
            num_samples=25, 
            results_folder='./results', 
            split_batches=True
        ):
            super().__init__()
    
            dataloader_config = DataLoaderConfiguration(split_batches=split_batches)
            self.accelerator = Accelerator(
                dataloader_config=dataloader_config,
                mixed_precision='no')
            
            self.image_size = image_size
    
            # Initialize the generator and discriminator
            self.gen = self.create_generator().cuda()
            self.dis = self.create_discriminator().cuda()
            self.g_optim = torch.optim.Adam(self.gen.parameters(), lr=train_lr, betas=(0.0, 0.99))
            self.d_optim = torch.optim.Adam(self.dis.parameters(), lr=train_lr, betas=(0.0, 0.99))
            
            self.train_num_steps = train_num_steps
            self.batch_size = train_batch_size
            self.gradient_accumulate_every = gradient_accumulate_every
    
            # Initialize the dataset and dataloader
            self.ds = Dataset(folder, image_size)
            self.dl = cycle(DataLoader(self.ds, batch_size=train_batch_size, shuffle=True, pin_memory=True, num_workers=os.cpu_count()))
    
            # Initialize the EMA for the generator
            self.ema = EMA(self.gen, beta=ema_decay, update_every=ema_update_every).to(self.device)
            
            self.results_folder = Path(results_folder)
            self.results_folder.mkdir(exist_ok=True)
            
            self.save_and_sample_every = save_and_sample_every
            self.num_samples = num_samples
            self.step = 0
    
        def create_generator(self):
            return dnnlib.util.construct_class_by_name(
                class_name='training.networks.Generator',
                z_dim=512,
                c_dim=0,
                w_dim=512,
                img_resolution=self.image_size,
                img_channels=3
            )
    
        def create_discriminator(self):
            return dnnlib.util.construct_class_by_name(
                class_name='training.networks.Discriminator',
                c_dim=0,
                img_resolution=self.image_size,
                img_channels=3
            )
    
        @property
        def device(self):
            return self.accelerator.device
    
        def save(self, milestone):
            if not self.accelerator.is_local_main_process:
                return
    
            data = {
                'step': self.step,
                'gen': self.accelerator.get_state_dict(self.gen),
                'dis': self.accelerator.get_state_dict(self.dis),
                'g_optim': self.g_optim.state_dict(),
                'd_optim': self.d_optim.state_dict(),
                'ema': self.ema.state_dict()
            }
    
            torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))
    
        def load(self, ckpt):
            data = torch.load(ckpt, map_location=self.device)
            self.gen.load_state_dict(data['gen'])
            self.dis.load_state_dict(data['dis'])
            self.g_optim.load_state_dict(data['g_optim'])
            self.d_optim.load_state_dict(data['d_optim'])
            self.ema.load_state_dict(data['ema'])
            self.step = data['step']
    
        def train(self):
            with tqdm(initial=self.step, total=self.train_num_steps, disable=not self.accelerator.is_main_process) as pbar:
                while self.step < self.train_num_steps:
                    total_g_loss = 0.
                    total_d_loss = 0.
    
                    for _ in range(self.gradient_accumulate_every):
                        # Get a batch of real images
                        real_images = next(self.dl).to(self.device)
                        
                        # Generate latent vectors
                        latent = torch.randn([self.batch_size, self.gen.z_dim]).cuda()
                        
                        # Generate fake images
                        fake_images = self.gen(latent, None)
    
                        # Discriminator logits for real and fake images
                        real_logits = self.dis(real_images, None)
                        fake_logits = self.dis(fake_images.detach(), None)
    
                        # Discriminator loss
                        d_loss = torch.nn.functional.softplus(fake_logits).mean() + torch.nn.functional.softplus(-real_logits).mean()
    
                        # Update discriminator
                        self.d_optim.zero_grad()
                        self.accelerator.backward(d_loss / self.gradient_accumulate_every)
                        self.d_optim.step()
                        total_d_loss += d_loss.item()
    
                        # Generator logits for fake images
                        fake_logits = self.dis(fake_images, None)
    
                        # Generator loss
                        g_loss = torch.nn.functional.softplus(-fake_logits).mean()
    
                        # Update generator
                        self.g_optim.zero_grad()
                        self.accelerator.backward(g_loss / self.gradient_accumulate_every)
                        self.g_optim.step()
                        total_g_loss += g_loss.item()
    
                    self.ema.update()
    
                    pbar.set_description(f'G loss: {total_g_loss:.4f} D loss: {total_d_loss:.4f}')
                    self.step += 1
    
                    if self.step % self.save_and_sample_every == 0:
                        self.ema.ema_model.eval()
                        with torch.no_grad():
                            milestone = self.step // self.save_and_sample_every
                            batches = num_to_groups(self.num_samples, self.batch_size)
                            all_images_list = list(map(lambda n: self.ema.ema_model(torch.randn([n, self.gen.z_dim]).cuda(), None), batches))
                        all_images = torch.cat(all_images_list, dim=0)
                        utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow=int(np.sqrt(self.num_samples)))
                        self.save(milestone)
                    pbar.update(1)
    
            print('Training complete')
    
        def inference(self, num=1000, n_iter=5, output_path='./submission'):
            if not os.path.exists(output_path):
                os.mkdir(output_path)
            with torch.no_grad():
                for i in range(n_iter):
                    latent = torch.randn(num // n_iter, self.gen.z_dim).cuda()
                    images = self.ema.ema_model(latent, None)
                    for j, img in enumerate(images):
                        utils.save_image(img, f'{output_path}/{i * (num // n_iter) + j + 1}.jpg')
                        
    
    

    完整的样例图对比

    SimpleMediumStrongBoss
    simplemediumstrongboss
  • 相关阅读:
    【毕业季】你好陌生人,这是一封粉色信笺
    MAC M芯片 Anaconda安装
    当Java遇到Redis:Jedis实战入门
    【每日一题】528. 按权重随机选择
    如何理解CDN?说说实现原理?
    打车APP开发平台具体解决了哪些出行问题?
    mongodb
    【附源码】计算机毕业设计SSM特殊教育学校学生管理系统
    算法题:SOJ1092: 欧几里得算法
    编译器优化:何为别名分析
  • 原文地址:https://blog.csdn.net/weixin_42426841/article/details/139814219