• Wakeup Source框架设计与实现


    Wakeup Source 为系统组件提供了投票机制,以便低功耗子系统判断当前是否可以进入休眠。

    Wakeup Source(后简称:WS) 模块可与内核中的其他模块或者上层服务交互,并最终体现在对睡眠锁的控制上。

    通用低功耗软件栈.png

     

    注:本文是基于内核kernel-5.10展开,分析基于32位系统,若是64位系统,则combined_event_count会被拆分成2个32位分别来纪录唤醒事件的总数和正在处理中的唤醒事件的总数

    1. 模块功能说明

    WS的处理逻辑基本上是围绕 combined_event_count 变量展开的,这个变量高16位记录系统已处理的所有的唤醒事件总数,低16位记录在处理中的唤醒事件总数。每次持锁时,处理中的唤醒事件记录(低16位)会加1;每次释放锁时,处理中的唤醒事件记录(低16位)会减1,同时已处理的唤醒事件记录(高16位)会加1。

    对于每次系统能否进入休眠,通过判断是否有正在处理中的唤醒事件(低16位)来决定。该模块实现主要的功能:

    • 持锁和释放锁
    • 注册和注销锁
    • 查询激活状态锁个数

    2. 主要数据结构

    2.1 wakeup_source 结构体

    @include/linux/pm_wakeup.h
    /**
     * struct wakeup_source - Representation of wakeup sources
     *
     * @name: Name of the wakeup source
     * @id: Wakeup source id
     * @entry: Wakeup source list entry
     * @lock: Wakeup source lock
     * @wakeirq: Optional device specific wakeirq
     * @timer: Wakeup timer list
     * @timer_expires: Wakeup timer expiration
     * @total_time: Total time this wakeup source has been active.
     * @max_time: Maximum time this wakeup source has been continuously active.
     * @last_time: Monotonic clock when the wakeup source's was touched last time.
     * @prevent_sleep_time: Total time this source has been preventing autosleep.
     * @event_count: Number of signaled wakeup events.
     * @active_count: Number of times the wakeup source was activated.
     * @relax_count: Number of times the wakeup source was deactivated.
     * @expire_count: Number of times the wakeup source's timeout has expired.
     * @wakeup_count: Number of times the wakeup source might abort suspend.
     * @dev: Struct device for sysfs statistics about the wakeup source.
     * @active: Status of the wakeup source.
     * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time.
     */
    struct wakeup_source {
    	const char 		*name; //ws 名称
    	int			id;  //WS系统给本ws分配的ID
    	struct list_head	entry; //用于把本ws节点维护到WS系统的全局链表中
    	spinlock_t		lock;
    	struct wake_irq		*wakeirq; //与本ws节点绑定的唤醒中断相关的结构体,用户可自行把指定中断与ws绑定
    	struct timer_list	timer; //超时锁使用,如定义本ws为超时锁,指定在一定时间后释放锁
    	unsigned long		timer_expires;//超时锁超时时间
    	ktime_t total_time; //本ws激活的总时长
    	ktime_t max_time;   //在ws激活历史中,最长一次的激活时间
    	ktime_t last_time;  //最后一次访问本ws的时间
    	ktime_t start_prevent_time; //本ws最近一次阻止autosleep进入休眠的时间戳
    	ktime_t prevent_sleep_time; //因本ws导致的阻止autosleep进入休眠的总时间
    	unsigned long		event_count; //事件次数,本ws被持锁(不考虑是否已持锁),则加1并作记录
    	unsigned long		active_count;//激活次数,本ws仅在首次持锁(激活)时加1(已持锁则不加1,锁释放后再次持锁则加1)
    	unsigned long		relax_count; //释放次数,与 active_count 相对
    	unsigned long		expire_count; //超时锁超时次数
    	unsigned long		wakeup_count; //与event_count一样,但受events_check_enabled 使能标记控制
    	struct device		*dev; //与本ws绑定的设备
    	bool			active:1; //标记是否处于激活状态
    	bool			autosleep_enabled:1; //标记是否使能autosleep
    };
    

    2.2 核心变量

    2.2.1 combined_event_count 变量

    static atomic_t combined_event_count = ATOMIC_INIT(0);
    该变量是1个组合计数变量,高16位记录唤醒事件的总数,低16位记录正在处理中的唤醒事件的总数。系统根据低16位(正在处理中的唤醒事件)来判断是否可以进入休眠。

    2.2.2 wakeup_sources 变量

    static LIST_HEAD(wakeup_sources);
    所有通过调用 wakeup_source_register()注册的ws全部维护在此链表中,以便系统进行维护。

    2.3 主要函数分析

    Wakeup Source 对外提供的主要接口:

    • wakeup_source_register()wakeup_source_unregister()分别用于注册与注销一个ws
    • __pm_stay_awake()__pm_relax(),针对ws类型对象提供持锁与释放锁接口
    • (device_set_wakeup_capable()+device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable())/device_init_wakeup()给设备配置是否支持唤醒以及注册/注销ws的接口
    • pm_stay_awake()pm_relax(),针对device类型对象提供持锁与释放锁接口

    2.3.1 wakeup_source_register()/wakeup_source_unregister() 接口

    wakeup_source_register()函数为dev设备创建ws,并将创建的ws添加到全局链表wakeup_sources中,方便后续维护,并在sysfs系统中创建节点/sys/class/wakeup/wakeup/,便于获取ws相关信息。

    @drivers/base/power/wakeup.c
    /**
     * wakeup_source_register - Create wakeup source and add it to the list.
     * @dev: Device this wakeup source is associated with (or NULL if virtual).
     * @name: Name of the wakeup source to register.
     */
    struct wakeup_source *wakeup_source_register(struct device *dev,
    					     const char *name)
    {
    	struct wakeup_source *ws;
    	int ret;
    
    	ws = wakeup_source_create(name); //分配内存,设置ws的name和id
    	if (ws) {
    		if (!dev || device_is_registered(dev)) {
    			//在sysfs下为该ws创建dev, /sys/class/wakeup/wakeup/
    			ret = wakeup_source_sysfs_add(dev, ws);
    			if (ret) {
    				wakeup_source_free(ws);
    				return NULL;
    			}
    		}
    		wakeup_source_add(ws); //设置超时回调函数并将ws添加到wakeup_sources链表
    	}
    	return ws;
    }
    @drivers/base/power/wakeup_stats.c
    static struct device *wakeup_source_device_create(struct device *parent,
    						  struct wakeup_source *ws)
    {
    	struct device *dev = NULL;
    	int retval = -ENODEV;
    
    	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    	device_initialize(dev);
    	dev->devt = MKDEV(0, 0);
    	dev->class = wakeup_class; //ws dev挂于wakeup类
    	dev->parent = parent;
    	dev->groups = wakeup_source_groups;
    	dev->release = device_create_release;
    	dev_set_drvdata(dev, ws);
    	device_set_pm_not_required(dev);
    	retval = kobject_set_name(&dev->kobj, "wakeup%d", ws->id);
    	retval = device_add(dev);
    	return dev;
    }
    //ws dev存在的属性: /sys/class/wakeup/wakeup/
    static struct attribute *wakeup_source_attrs[] = {
    	&dev_attr_name.attr, //RO, ws 名称
    	&dev_attr_active_count.attr, //RO, 激活次数
    	&dev_attr_event_count.attr, //RO, 持锁次数
    	&dev_attr_wakeup_count.attr, //RO, 同event_count,但受events_check_enabled使能标记
    	&dev_attr_expire_count.attr, //RO, 超时次数
    	&dev_attr_active_time_ms.attr, //RO, 如当前处于激活状态,显示已激活时间
    	&dev_attr_total_time_ms.attr, //RO, 总激活时间
    	&dev_attr_max_time_ms.attr, //RO, 最长激活时间
    	&dev_attr_last_change_ms.attr, //RO, 最近一次激活时的时间戳
    	&dev_attr_prevent_suspend_time_ms.attr, //RO, 阻止autosleep进入休眠的总时间
    	NULL,
    };
    ATTRIBUTE_GROUPS(wakeup_source);
    

    wakeup_source_unregister() 接口删除了已注册的ws,移除了sysfs系统中的节点并释放占用的系统资源。

    @drivers/base/power/wakeup.c
    void wakeup_source_unregister(struct wakeup_source *ws)
    {
    	if (ws) {
    		wakeup_source_remove(ws); //从wakeup_sources队列移除并删除其定时器
    		if (ws->dev)
    			wakeup_source_sysfs_remove(ws);//移除该ws在sysfs系统中的信息
    
    		wakeup_source_destroy(ws);
    	}
    }
    void wakeup_source_destroy(struct wakeup_source *ws)
    {
    	__pm_relax(ws); //释放该ws
    	wakeup_source_record(ws);//如果该ws被持锁过,则将其记录叠加到deleted_ws这个ws上
    	wakeup_source_free(ws);//释放内存资源
    }
    
    static struct wakeup_source deleted_ws = {//用于保存已移除ws的记录
    	.name = "deleted",
    	.lock =  __SPIN_LOCK_UNLOCKED(deleted_ws.lock),
    };
    
    static void wakeup_source_record(struct wakeup_source *ws)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&deleted_ws.lock, flags);
    
    	if (ws->event_count) {//如果该ws被持锁过,则将记录都叠加到deleted_ws这个ws上
    		deleted_ws.total_time =
    			ktime_add(deleted_ws.total_time, ws->total_time);
    		deleted_ws.prevent_sleep_time =
    			ktime_add(deleted_ws.prevent_sleep_time,
    				  ws->prevent_sleep_time);
    		deleted_ws.max_time =
    			ktime_compare(deleted_ws.max_time, ws->max_time) > 0 ?
    				deleted_ws.max_time : ws->max_time;
    		deleted_ws.event_count += ws->event_count;
    		deleted_ws.active_count += ws->active_count;
    		deleted_ws.relax_count += ws->relax_count;
    		deleted_ws.expire_count += ws->expire_count;
    		deleted_ws.wakeup_count += ws->wakeup_count;
    	}
    
    	spin_unlock_irqrestore(&deleted_ws.lock, flags);
    }
    

    2.3.2 __pm_stay_awake()/__pm_relax() 接口

    __pm_stay_awake() 用于上锁ws来阻止系统休眠。

    @drivers/base/power/wakeup.c
    void __pm_stay_awake(struct wakeup_source *ws)
    {
    	unsigned long flags;
    
    	if (!ws)
    		return;
    
    	spin_lock_irqsave(&ws->lock, flags);
    
    	wakeup_source_report_event(ws, false);//纪录该ws的信息
    	del_timer(&ws->timer);
    	ws->timer_expires = 0;
    
    	spin_unlock_irqrestore(&ws->lock, flags);
    }
    static void wakeup_source_report_event(struct wakeup_source *ws, bool hard)
    {
    	ws->event_count++;  //持锁次数加1
    	/* This is racy, but the counter is approximate anyway. */
    	if (events_check_enabled)
    		ws->wakeup_count++;
    
    	if (!ws->active) //ws还未激活情况下,激活ws
    		wakeup_source_activate(ws);
    
    	if (hard)  //如果需要,可以强制阻止系统休眠
    		pm_system_wakeup();
    }
    static void wakeup_source_activate(struct wakeup_source *ws)
    {
    	unsigned int cec;
    
    	if (WARN_ONCE(wakeup_source_not_registered(ws),
    			"unregistered wakeup source\n"))
    		return;
    
    	ws->active = true;
    	ws->active_count++;  //激活次数加1
    	ws->last_time = ktime_get(); //纪录最后操作该锁的时间戳
    	if (ws->autosleep_enabled) //如果autosleep已使能,则记录该ws阻止休眠时时间戳
    		ws->start_prevent_time = ws->last_time;
    
    	/* Increment the counter of events in progress. */
    	cec = atomic_inc_return(&combined_event_count); //combined_event_count低16位加1
    
    	trace_wakeup_source_activate(ws->name, cec);
    }
    

    __pm_relax() 用于将持有的睡眠锁释放掉,并在检测到combined_event_count低16位为0(表示当前没有在处理的ws)时会触发wakeup_count_wait_queue等待队列运行,如果工作队列满足睡眠条件,则继续进入睡眠流程,该机制是通过pm_get_wakeup_count()接口与autosleep配合使用的

    @drivers/base/power/wakeup.c
    void __pm_relax(struct wakeup_source *ws)
    {
    	unsigned long flags;
    
    	if (!ws)
    		return;
    
    	spin_lock_irqsave(&ws->lock, flags);
    	if (ws->active) //如果ws已激活,则去激活该ws
    		wakeup_source_deactivate(ws);
    	spin_unlock_irqrestore(&ws->lock, flags);
    }
    
    static void wakeup_source_deactivate(struct wakeup_source *ws)
    {
    	unsigned int cnt, inpr, cec;
    	ktime_t duration;
    	ktime_t now;
    
    	ws->relax_count++; //释放次数加1
    	/*
    	 * __pm_relax() may be called directly or from a timer function.
    	 * If it is called directly right after the timer function has been
    	 * started, but before the timer function calls __pm_relax(), it is
    	 * possible that __pm_stay_awake() will be called in the meantime and
    	 * will set ws->active.  Then, ws->active may be cleared immediately
    	 * by the __pm_relax() called from the timer function, but in such a
    	 * case ws->relax_count will be different from ws->active_count.
    	 */
    	if (ws->relax_count != ws->active_count) {
    		ws->relax_count--; //未解决定时锁与主动调用释放锁并发操作时出现冲突做的处理
    		return;
    	}
    
    	ws->active = false;
    
    	now = ktime_get();
    	duration = ktime_sub(now, ws->last_time);
    	ws->total_time = ktime_add(ws->total_time, duration); //叠加总的持锁时间
    	if (ktime_to_ns(duration) > ktime_to_ns(ws->max_time))
    		ws->max_time = duration;  //更新最长持锁时间
    
    	ws->last_time = now; //纪录最后操作该锁的时间戳
    	del_timer(&ws->timer);
    	ws->timer_expires = 0;
    
    	if (ws->autosleep_enabled)//如果autosleep已使能,更新该ws阻止系统休眠的时长
    		update_prevent_sleep_time(ws, now);
    
    	/*
    	 * Increment the counter of registered wakeup events and decrement the
    	 * couter of wakeup events in progress simultaneously.
    	 */
    	cec = atomic_add_return(MAX_IN_PROGRESS, &combined_event_count);//combined_event_count高16位加1
    	trace_wakeup_source_deactivate(ws->name, cec);
    
    	split_counters(&cnt, &inpr);//拆分出combined_event_count高16位和低16位
    	if (!inpr && waitqueue_active(&wakeup_count_wait_queue))//如果该ws已经无正在处理的唤醒事件,则通知PM core
    		wake_up(&wakeup_count_wait_queue);
    }
    

    注:同个ws连续使用多次__pm_stay_awake()__pm_relax()只会增加/减少一次combined_event_count低16位(表示正在处理中的事件总数),只要__pm_relax()被调用就会释放锁。

    2.3.3 pm_get_wakeup_count()接口

    该函数主要是获取已处理的wakeup event数量(combined_event_count高16位)与正在处理的wakeup event数量是否为0(combined_event_count低16位)。

    bool pm_get_wakeup_count(unsigned int *count, bool block)
    {
    	unsigned int cnt, inpr;
    
    	if (block) { 
    		DEFINE_WAIT(wait); //定义名为wait的等待队列入口
    
    		for (;;) {
    			prepare_to_wait(&wakeup_count_wait_queue, &wait,
    					TASK_INTERRUPTIBLE); //准备 wakeup_count_wait_queue 等待队列
    			split_counters(&cnt, &inpr);
    			if (inpr == 0 || signal_pending(current))
    				break;
    			pm_print_active_wakeup_sources();
    			schedule(); //调度到其他线程
    		}
    		 //__pm_relax() 里wake_up(&wakeup_count_wait_queue);会触发调度到此处
    		finish_wait(&wakeup_count_wait_queue, &wait);
    	}
    
    	split_counters(&cnt, &inpr);
    	*count = cnt;
    	return !inpr; //返回0表示有待处理事件,返回1表示无待处理事件
    }
    

    1.如果入参block为0,则仅仅对入参count赋值当前已处理的wakeup event总数,并返回当前是否有待处理wakeup event(返回0表示有待处理事件,返回1表示无待处理事件)。
    2.如果入参block为1,则需要一直等到待处理事件为0(combined_event_count低16位为0)或者当前挂起进程有事件需要处理时才退出。该处理分支的wait等待队列会在__pm_relax()满足睡眠条件时触发调度运行,即finish_wait().

    2.3.4 pm_wakeup_pending() 接口

    该函数的功能是确认当前是否满足休眠条件,返回true表示可以休眠,false表示不可休眠。

    bool pm_wakeup_pending(void)
    {
    	unsigned long flags;
    	bool ret = false;
    
    	raw_spin_lock_irqsave(&events_lock, flags);
    	if (events_check_enabled) {
    		unsigned int cnt, inpr;
    
    		split_counters(&cnt, &inpr);
    		ret = (cnt != saved_count || inpr > 0);
    		events_check_enabled = !ret;
    	}
    	raw_spin_unlock_irqrestore(&events_lock, flags);
    
    	if (ret) {
    		pm_pr_dbg("Wakeup pending, aborting suspend\n");
    		pm_print_active_wakeup_sources();
    	}
    
    	return ret || atomic_read(&pm_abort_suspend) > 0;
    }
    

    判断允许休眠的依据:
    1.已处理的wakeup event数量与已记录的数量(saved_count)一致,且
    2.待处理的wakeup event数量为0,且
    3.原子量pm_abort_suspend为0(该值大于0表示睡眠流程中出现了唤醒中断或事件,唤醒事件通过调用pm_system_wakeup()来给pm_abort_suspend加1操作。)

    2.3.5 device与wakeup_source关联处理的接口

    kernel抽象出的device数据结构存放着power manager相关的信息,其中就存放着wakeup source数据结构,如下:

    //代码格式错误,仅为呈现数据结构,请忽略格式。
    struct device {
    	// @power:	For device power management.
    	struct dev_pm_info	power {
    		unsigned int		can_wakeup:1; //需置1才允许使用wakeup source
    		struct wakeup_source	*wakeup; 
    	};
    };
    

    wakeup source框架中为此提供了大量相关的接口直接操作某个dev的ws,接口如下:

    • int device_wakeup_enable(struct device *dev) :注册设备的wakeup source
      1.以dev名注册个ws,并指定该ws dev的parent为当前dev
      2.将注册的ws关联到dev->power.wakeup,如果存在wakeirq,也会一起绑定到该ws上。

    • int device_wakeup_disable(struct device *dev):注销设备的wakeup source
      1.取消已注册的ws与dev->power.wakeup的关联
      2.注销ws

    • void device_set_wakeup_capable(struct device *dev, bool capable):设置设备是否支持wakeup source
      1.设置dev->power.can_wakeup
      2.如果设备支持wakeup,则为其创建属性文件(位于/sys/devices//power/下);如果设备不支持wakeup,则不会移除相关属性文件。

    static struct attribute *wakeup_attrs[] = {
    #ifdef CONFIG_PM_SLEEP
    	&dev_attr_wakeup.attr, //RW,可写入enabled/disabled动态配置是否支持wakeup
    	&dev_attr_wakeup_count.attr, //RO, 读取该dev ws的wakeup_count
    	&dev_attr_wakeup_active_count.attr, //RO, 读取该dev ws的active_count
    	&dev_attr_wakeup_abort_count.attr, //RO, 读取该dev ws的wakeup_count
    	&dev_attr_wakeup_expire_count.attr, //RO, 读取该dev ws的expire_count
    	&dev_attr_wakeup_active.attr, //RO, 读取该dev ws的active状态
    	&dev_attr_wakeup_total_time_ms.attr, //RO, 读取该dev ws的total_time
    	&dev_attr_wakeup_max_time_ms.attr, //RO, 读取该dev ws的max_time
    	&dev_attr_wakeup_last_time_ms.attr, //RO, 读取该dev ws的last_time
    #ifdef CONFIG_PM_AUTOSLEEP
    	&dev_attr_wakeup_prevent_sleep_time_ms.attr, //RO, 读取该dev ws的prevent_sleep_time
    #endif
    #endif
    	NULL,
    };
    
    • int device_init_wakeup(struct device *dev, bool enable):一步到位直接配置是否支持wakeup并且注册/注销ws
    int device_init_wakeup(struct device *dev, bool enable)
    {
    	int ret = 0;
    
    	if (enable) {
    		device_set_wakeup_capable(dev, true);
    		ret = device_wakeup_enable(dev);
    	} else {
    		device_wakeup_disable(dev);
    		device_set_wakeup_capable(dev, false); 
    	}
    
    	return ret;
    }
    
    • int device_set_wakeup_enable(struct device *dev, bool enable):设置设备是否能通过ws唤醒系统,注册/注销ws
    int device_set_wakeup_enable(struct device *dev, bool enable)
    {
    	return enable ? device_wakeup_enable(dev) : device_wakeup_disable(dev);
    }
    
    • void pm_stay_awake(struct device *dev):持锁设备的ws,不让设备休眠,实际是调用__pm_stay_awake(dev->power.wakeup);实现

    • void pm_relax(struct device *dev):释放设备的ws,允许设备休眠,实际是调用__pm_relax(dev->power.wakeup);实现

    总结:
    1.device_set_wakeup_capable() 用于设置是否支持wakeup,并提供属性节点,便于调试
    2.device_wakeup_enable()/device_wakeup_disable()/device_set_wakeup_enable()主要是注册/注销设备ws,需在device_set_wakeup_capable()enabled的前提下才能使用。
    3.device_init_wakeup() 通常使用在默认支持wakeup的device上,在probe/remove时分别enable/disable。
    4.pm_stay_awake()/pm_relax()主要是持有/释放ws锁,阻止/允许系统休眠

    3. 主要工作时序

    1)device或者其他需要上锁的模块调用device_init_wakeup()/wakeup_source_register()来注册ws
    2)在处理业务时,为了防止系统进入睡眠流程,设备或模块可以通过调用pm_stay_awake()/__pm_stay_awake()来持锁ws阻止休眠
    3)当业务处理完成后,设备或模块可以调用pm_relax()/__pm_relax()来释放ws允许系统休眠
    4)在__pm_relax()释放锁时,会检查当前是否有正在处理的持锁事件,如果没有,则触发wakeup_count_wait_queue
    5)wakeup_count_wait_queue所在的pm_get_wakeup_count()接口会返回到autosleep的工作队列中继续走休眠流程
    image

    4. 调试节点

    1. 获取所有wakeup source信息节点:cat /d/wakeup_sources
      列出所有wakeup_source当前的信息,包括:name,active_count,event_count,wakeup_count,expire_count,active_since,total_time,max_time,last_change,prevent_suspend_time。
      注:代码实现在@drivers/base/power/wakeup.c
      image

    2. 从wakeup类下获取某个ws的信息:/sys/class/wakeup/wakeup/
      wakeup类下汇总了所有已注册的ws,该节点下存在属性:name, active_count, event_count, wakeup_count,expire_count, active_time_ms, total_time_ms, max_time_ms, last_change_ms, prevent_suspend_time_ms。
      注:代码实现在@drivers/base/power/wakeup_stats.c
      image

    3. 从device节点下获取该设备的ws信息:/sys/devices//power/
      该节点存在如下属性信息:wakeup(是否支持唤醒),wakeup_count, wakeup_active_count, wakeup_abort_count, wakeup_expire_count, wakeup_active, wakeup_total_time_ms, max_time_ms, last_time_ms, prevent_sleep_time_ms。
      注:代码实现在@drivers/base/power/sysfs.c
      image

  • 相关阅读:
    毅速3D打印丨哪些产品最适合应用3D打印随形水路模具
    【20年扬大真题】删除字符串s中的所有空格
    《哥德尔、艾舍尔、巴赫——集异璧之大成》阅读笔记1
    hadoop伪分布式环境搭建详解
    金仓数据库 KingbaseES SQL 语言参考手册 (3.5. 格式模型、3.6. 空值、3.7. 注释)
    【数据结构】带头节点双向循环链表
    智能算法学习指导
    【SpringMVC】运行过程
    C# SocketUDP服务器,组播
    Direct Sparse Mapping reading notes -- Initialization
  • 原文地址:https://www.cnblogs.com/jiafan-ma/p/18200874