卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(Deep Learning)的代表算法之一。卷积神经网络具有表征学习(Representation Learning)能力,能够按其阶层结构对输入信息进行平移不变分类(Shift-Invariant Classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
卷积神经网络主要有三种构筑方式,包括一维构筑、二维构筑和全卷积构筑。在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(Prior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。
与传统的全连接网络相比,卷积神经网络通过局部连接和权重共享的方式,大幅减少了网络中的参数数量,降低了模型的复杂度,提高了计算效率,同时也增强了模型的泛化能力。这使得卷积神经网络在处理图像、视频等具有局部相关性的数据时表现出色,因此在计算机视觉领域得到了广泛应用。
在图像识别领域,卷积神经网络可以自动学习和提取图像中的特征,通过多层卷积和池化操作,逐渐将低层次的特征组合成高层次的特征表示,从而实现高效的图像分类和识别。此外,卷积神经网络还可以应用于目标检测、人脸识别、图像分割等任务,具有广泛的应用前景。
卷积神经网络的应用场景十分广泛,主要包括但不限于以下几个方面:
总的来说,卷积神经网络的应用场景十分广泛,几乎涵盖了所有需要处理和分析图像、音频、文本等数据的领域。随着技术的不断发展和进步,相信卷积神经网络在未来的应用将会更加广泛和深入。