• 代码随想录算法训练营第23期day38|动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯


     目录

    一、动态规划理论基础

    1.动态规划的解题步骤

    2.动态规划应该如何debug

    二、(leetcode 509)斐波那契数

    1.递归解法

    2.动态规划

    1)确定dp数组以及下标的含义

    2)确定递推公式

    3)dp数组如何初始化

    4)确定遍历顺序

    5)举例推导dp数组

    三、(leetcode 70) 爬楼梯

    四、(leetcode 746)使用最小花费爬楼梯

    1.新题目描述

    2.原题目描述


    一、动态规划理论基础

    • 动态规划,英文:Dynamic Programming,简称DP
    • 动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的

    1.动态规划的解题步骤

    1. 确定dp数组(dp table)以及下标的含义
    2. 确定递推公式
    3. dp数组如何初始化
    4. 确定遍历顺序
    5. 举例推导dp数组

    为什么要先确定递推公式,然后在考虑初始化呢?因为一些情况是递推公式决定了dp数组要如何初始化!

    2.动态规划应该如何debug

    找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

    做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

    然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

    如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

    如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

    可以自己先思考这三个问题:

    • 这道题目我举例推导状态转移公式了么?
    • 我打印dp数组的日志了么?
    • 打印出来了dp数组和我想的一样么?

    如果这灵魂三问自己都做到了,基本上这道题目也就解决了,或者更清晰的知道自己究竟是哪一点不明白,是状态转移不明白,还是实现代码不知道该怎么写,还是不理解遍历dp数组的顺序。

    注意这里不是说不让大家问问题哈, 而是说问问题之前要有自己的思考,问题要问到点子上!

    二、(leetcode 509)斐波那契数

    力扣题目链接

    1.递归解法

    1. class Solution {
    2. public:
    3. int fib(int n) {
    4. if(n<2) return n;
    5. else return fib(n-1)+fib(n-2);
    6. }
    7. };
    • 时间复杂度:O(2^n)
    • 空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间

    2.动态规划

    动规五部曲:这里要用一个一维dp数组来保存递归的结果

    1)确定dp数组以及下标的含义

    dp[i]的定义为:第i个数的斐波那契数值是dp[i]

    2)确定递推公式

    题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2]

    3)dp数组如何初始化

    题目中把如何初始化也直接给了

    1. dp[0] = 0;
    2. dp[1] = 1;

    4)确定遍历顺序

    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

    5)举例推导dp数组

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

    0 1 1 2 3 5 8 13 21 34 55

    如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

    1. class Solution {
    2. public:
    3. int fib(int N) {
    4. if (N <= 1) return N;
    5. vector<int> dp(N + 1);
    6. dp[0] = 0;
    7. dp[1] = 1;
    8. for (int i = 2; i <= N; i++) {
    9. dp[i] = dp[i - 1] + dp[i - 2];
    10. }
    11. return dp[N];
    12. }
    13. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(n)

    当然可以发现,只需要维护两个数值就可以了,不需要记录整个序列。

    代码如下:

    1. class Solution {
    2. public:
    3. int fib(int N) {
    4. if (N <= 1) return N;
    5. int dp[2];
    6. dp[0] = 0;
    7. dp[1] = 1;
    8. for (int i = 2; i <= N; i++) {
    9. int sum = dp[0] + dp[1];
    10. dp[0] = dp[1];
    11. dp[1] = sum;
    12. }
    13. return dp[1];
    14. }
    15. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(1)

    三、(leetcode 70) 爬楼梯

    力扣题目链接

    暗戳戳说,感觉这道题跟上面一道题一样啊,就是有了实际背景!

    动规五部曲:

    定义一个一维数组来记录不同楼层的状态

    1)确定dp数组以及下标的含义

    dp[i]: 爬到第i层楼梯,有dp[i]种方法

    2)确定递推公式

    从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

    首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

    还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

    那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!

    所以dp[i] = dp[i - 1] + dp[i - 2] 。

    3)dp数组如何初始化

    不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。(dp[0]不管怎么定义都很牵强,那就不定义了,就是这么任性!嘻嘻!)

    4)确定遍历顺序

    从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

    5)举例推导dp数组

    举例当n为5的时候,dp table(dp数组)应该是这样的

    70.爬楼梯

    以上五部分析完之后,C++代码如下:

    1. // 版本一
    2. class Solution {
    3. public:
    4. int climbStairs(int n) {
    5. if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
    6. vector<int> dp(n + 1);
    7. dp[1] = 1;
    8. dp[2] = 2;
    9. for (int i = 3; i <= n; i++) { // 注意i是从3开始的
    10. dp[i] = dp[i - 1] + dp[i - 2];
    11. }
    12. return dp[n];
    13. }
    14. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(n)

    当然依然也可以,优化一下空间复杂度,代码如下:

    1. // 版本二
    2. class Solution {
    3. public:
    4. int climbStairs(int n) {
    5. if (n <= 1) return n;
    6. int dp[3];
    7. dp[1] = 1;
    8. dp[2] = 2;
    9. for (int i = 3; i <= n; i++) {
    10. int sum = dp[1] + dp[2];
    11. dp[1] = dp[2];
    12. dp[2] = sum;
    13. }
    14. return dp[2];
    15. }
    16. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(1)

    后面的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化,但面试中能写出版本一就够了哈,清晰明了,如果面试官要求进一步优化空间的话,再去优化。因为版本一才能体现出动规的思想精髓,递推的状态变化。

    四、(leetcode 746)使用最小花费爬楼梯

    力扣题目链接

    1.新题目描述

    1)确定dp数组以及下标的含义

    使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

    2)确定递推公式

    可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

    一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

    3)dp数组如何初始化

    看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

    那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

    这里就要说明本题力扣为什么改题意,而且修改题意之后就清晰很多的原因了。

    新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

    所以初始化 dp[0] = 0,dp[1] = 0;

    4)确定遍历顺序

    最后一步,递归公式有了,初始化有了,如何遍历呢?

    本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

    因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

    但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?

    这些都与遍历顺序息息相关。

    5)举例推导dp数组

    拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

    以上分析完毕,整体C++代码如下:

    1. class Solution {
    2. public:
    3. int minCostClimbingStairs(vector<int>& cost) {
    4. vector<int> dp(cost.size() + 1);
    5. dp[0] = 0; // 默认第一步都是不花费体力的
    6. dp[1] = 0;
    7. for (int i = 2; i <= cost.size(); i++) {
    8. dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
    9. }
    10. return dp[cost.size()];
    11. }
    12. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(n)

    还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,C++代码如下:

    1. // 版本二
    2. class Solution {
    3. public:
    4. int minCostClimbingStairs(vector<int>& cost) {
    5. int dp0 = 0;
    6. int dp1 = 0;
    7. for (int i = 2; i <= cost.size(); i++) {
    8. int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
    9. dp0 = dp1; // 记录一下前两位
    10. dp1 = dpi;
    11. }
    12. return dp1;
    13. }
    14. };
    • 时间复杂度:O(n)
    • 空间复杂度:O(1)

    2.原题目描述

    旧力扣描述,如果按照第一步是花费的,最后一步不花费,那么代码是这么写的

    1. // 版本一
    2. class Solution {
    3. public:
    4. int minCostClimbingStairs(vector<int>& cost) {
    5. vector<int> dp(cost.size());
    6. dp[0] = cost[0]; // 第一步有花费
    7. dp[1] = cost[1];
    8. for (int i = 2; i < cost.size(); i++) {
    9. dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
    10. }
    11. // 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
    12. return min(dp[cost.size() - 1], dp[cost.size() - 2]);
    13. }
    14. };
  • 相关阅读:
    在模拟器上安装magisk实现Charles抓https包(三)
    String工具类
    DSPE-PEG-PDP,DSPE-PEG-OPSS,磷脂-聚乙二醇-巯基吡啶可减少肽的免疫原性
    劳保鞋批发,你找对地方了吗?
    UVM 的精髓在于给验证人员提供了快速搭建 testbench 的途径
    分布式--Redis的安装与数据类型的使用
    设计模式之适配器模式
    JAVASE--继承
    记录一次Powerjob踩的坑(Failed to deserialize message)
    R语言layout () 函数
  • 原文地址:https://blog.csdn.net/weixin_42179093/article/details/134220177