数据集是受教育年限和收入,如下图

代码如下
- import torch
- import numpy as np
- import matplotlib.pyplot as plt
- import pandas as pd
-
- data = pd.read_csv('./Income.csv')
-
- X = torch.from_numpy(data.Education.values.reshape(-1,1).astype(np.float32))
- Y = torch.from_numpy(data.Income.values.reshape(-1,1).astype(np.float32))
-
- learning_rate = 0.0001
-
- w = torch.randn(1,requires_grad=True)
- b = torch.zeros(1,requires_grad=True)
-
- for epoch in range(50):
- for x,y in zip(X,Y):
- y_pred = torch.matmul(x,w) + b
- loss = (y - y_pred).pow(2).mean()
- if not w.grad is None:
- w.grad.data.zero_()
- if not b.grad is None:
- b.grad.data.zero_()
- loss.backward()
- with torch.no_grad():
- w.data -= w.grad.data * learning_rate
- b.data -= b.grad.data * learning_rate
-
- plt.scatter(data.Education,data.Income)
- plt.plot(X.numpy(),(X.numpy() * w.data.numpy() + b.data.numpy()),c='r')
- plt.xlabel('Education')
- plt.ylabel('Income')
- plt.show()
输出如下
