• 【safetensor】介绍和基础代码


    Hugging Face, EleutherAI, StabilityAI 用的多

    介绍

    文件形式

    • header,体现其特性。如果强行将pickle或者空软连接 打开,会出现报错。解决详见:debug 连接到其他教程
    • 结构和参数
      数据结构

    安装

    with pip:
    
    Copied
    pip install safetensors
    with conda:
    
    Copied
    conda install -c huggingface safetensors
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    Usage

    文档: https://huggingface.co/docs/safetensors/index
    github: https://github.com/huggingface/safetensors

    测试安装

    import torch
    from safetensors import safe_open
    from safetensors.torch import save_file
    
    tensors = {
       "weight1": torch.zeros((1024, 1024)),
       "weight2": torch.zeros((1024, 1024))
    }
    save_file(tensors, "model.safetensors")
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device="cpu") as f:
       for key in f.keys():
           tensors[key] = f.get_tensor(key)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    加载

    文档 https://huggingface.co/docs/diffusers/using-diffusers/using_safetensors

    from diffusers import StableDiffusionPipeline
    
    pipeline = StableDiffusionPipeline.from_single_file(
        "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5

    Load tensors

    
    from safetensors import safe_open
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device=0) as f:
        for k in f.keys():
            tensors[k] = f.get_tensor(k)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    # Loading only part of the tensors (interesting when running on multiple GPU)
    
    from safetensors import safe_open
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device=0) as f:
        tensor_slice = f.get_slice("embedding")
        vocab_size, hidden_dim = tensor_slice.get_shape()
        tensor = tensor_slice[:, :hidden_dim]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    保存

    
    import torch
    from safetensors.torch import save_file
    
    tensors = {
        "embedding": torch.zeros((2, 2)),
        "attention": torch.zeros((2, 3))
    }
    save_file(tensors, "model.safetensors")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    转换到safetensor

    • 在线,利用hugging face

    The easiest way to convert your model weights is to use the Convert Space, given your model weights are already stored on the Hub. The Convert Space downloads the pickled weights, converts them, and opens a Pull Request to upload the newly converted .safetensors file to your repository.

    # 主函数
    def convert_file(
        pt_filename: str,
        sf_filename: str,
    ):
        loaded = torch.load(pt_filename, map_location="cpu")
        if "state_dict" in loaded:
            loaded = loaded["state_dict"]
        shared = shared_pointers(loaded)
        for shared_weights in shared:
            for name in shared_weights[1:]:
                loaded.pop(name)
    
        # For tensors to be contiguous
        loaded = {k: v.contiguous() for k, v in loaded.items()}
    
        dirname = os.path.dirname(sf_filename)
        os.makedirs(dirname, exist_ok=True)
        save_file(loaded, sf_filename, metadata={"format": "pt"})
        check_file_size(sf_filename, pt_filename)
        reloaded = load_file(sf_filename)
        for k in loaded:
            pt_tensor = loaded[k]
            sf_tensor = reloaded[k]
            if not torch.equal(pt_tensor, sf_tensor):
                raise RuntimeError(f"The output tensors do not match for key {k}")
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    例子

    解析

    import requests # pip install requests
    import struct
    
    def parse_single_file(url):
        # Fetch the first 8 bytes of the file
        headers = {'Range': 'bytes=0-7'}
        response = requests.get(url, headers=headers)
        # Interpret the bytes as a little-endian unsigned 64-bit integer
        length_of_header = struct.unpack(', response.content)[0]
        # Fetch length_of_header bytes starting from the 9th byte
        headers = {'Range': f'bytes=8-{7 + length_of_header}'}
        response = requests.get(url, headers=headers)
        # Interpret the response as a JSON object
        header = response.json()
        return header
    
    url = "https://huggingface.co/gpt2/resolve/main/model.safetensors"
    header = parse_single_file(url)
    
    print(header)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    unity-协程详解
    初级CRUD程序员 打工人流程规范
    现在陪玩多吗,用Python来看看他们的行情
    超市管理系统
    微信小程序开发实战7 小程序订阅消息
    华为OD机试(含B卷)真题2023 算法分类版,58道20个算法分类,如果距离机考时间不多了,就看这个吧,稳稳的
    项目整体管理
    刷题日记【第三天】
    谷粒学院——Day04【项目前端相关基础知识二】
    密码学-密码协议之零知识证明
  • 原文地址:https://blog.csdn.net/prinTao/article/details/133972928