• 目标检测算法改进系列之Backbone替换为LSKNet


    LSKNet

    Large Selective Kernel Network(LSKNet)可以动态地调整其大空间感受野,以更好地建模遥感场景中各种物体的测距的场景。据我们所知,这是首次在遥感物体检测领域探索大选择性卷积核机制的工作。在没有任何附加条件的情况下,我们LSKNet比主流检测器轻量的多,而且在多个数据集上刷新了SOTA!HRSC2016(98.46% mAP)、DOTA-v1.0(81.64% mAP)和FAIR1M-v1.0(47.87% mAP)。

    论文地址:Large Selective Kernel Network for Remote Sensing Object Detection

    LSKNet结构图

    单个LSKNet_block结构图

    添加LSKNet定义文件

    添加路径:ultralytics/nn/backbone/lsknet.py
    代码如下:

    import torch
    import torch.nn as nn
    from torch.nn.modules.utils import _pair as to_2tuple
    from timm.layers import DropPath, to_2tuple
    from functools import partial
    import numpy as np
    
    __all__ = 'lsknet_t', 'lsknet_s'
    
    class Mlp(nn.Module):
        def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
            super().__init__()
            out_features = out_features or in_features
            hidden_features = hidden_features or in_features
            self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
            self.dwconv = DWConv(hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
            self.drop = nn.Dropout(drop)
    
        def forward(self, x):
            x = self.fc1(x)
            x = self.dwconv(x)
            x = self.act(x)
            x = self.drop(x)
            x = self.fc2(x)
            x = self.drop(x)
            return x
    
    
    class LSKblock(nn.Module):
        def __init__(self, dim):
            super().__init__()
            self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
            self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
            self.conv1 = nn.Conv2d(dim, dim//2, 1)
            self.conv2 = nn.Conv2d(dim, dim//2, 1)
            self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3)
            self.conv = nn.Conv2d(dim//2, dim, 1)
    
        def forward(self, x):   
            attn1 = self.conv0(x)
            attn2 = self.conv_spatial(attn1)
    
            attn1 = self.conv1(attn1)
            attn2 = self.conv2(attn2)
            
            attn = torch.cat([attn1, attn2], dim=1)
            avg_attn = torch.mean(attn, dim=1, keepdim=True)
            max_attn, _ = torch.max(attn, dim=1, keepdim=True)
            agg = torch.cat([avg_attn, max_attn], dim=1)
            sig = self.conv_squeeze(agg).sigmoid()
            attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
            attn = self.conv(attn)
            return x * attn
    
    
    
    class Attention(nn.Module):
        def __init__(self, d_model):
            super().__init__()
    
            self.proj_1 = nn.Conv2d(d_model, d_model, 1)
            self.activation = nn.GELU()
            self.spatial_gating_unit = LSKblock(d_model)
            self.proj_2 = nn.Conv2d(d_model, d_model, 1)
    
        def forward(self, x):
            shorcut = x.clone()
            x = self.proj_1(x)
            x = self.activation(x)
            x = self.spatial_gating_unit(x)
            x = self.proj_2(x)
            x = x + shorcut
            return x
    
    
    class Block(nn.Module):
        def __init__(self, dim, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU, norm_cfg=None):
            super().__init__()
            self.norm1 = nn.BatchNorm2d(dim)
            self.norm2 = nn.BatchNorm2d(dim)
            self.attn = Attention(dim)
            self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
            layer_scale_init_value = 1e-2            
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
    
        def forward(self, x):
            x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
            return x
    
    
    class OverlapPatchEmbed(nn.Module):
        """ Image to Patch Embedding
        """
    
        def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768, norm_cfg=None):
            super().__init__()
            patch_size = to_2tuple(patch_size)
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                                  padding=(patch_size[0] // 2, patch_size[1] // 2))
            self.norm = nn.BatchNorm2d(embed_dim)
    
    
        def forward(self, x):
            x = self.proj(x)
            _, _, H, W = x.shape
            x = self.norm(x)        
            return x, H, W
    
    class LSKNet(nn.Module):
        def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512],
                    mlp_ratios=[8, 8, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
                     depths=[3, 4, 6, 3], num_stages=4, 
                     norm_cfg=None):
            super().__init__()
            
            self.depths = depths
            self.num_stages = num_stages
    
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
            cur = 0
    
            for i in range(num_stages):
                patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                                patch_size=7 if i == 0 else 3,
                                                stride=4 if i == 0 else 2,
                                                in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                                embed_dim=embed_dims[i], norm_cfg=norm_cfg)
    
                block = nn.ModuleList([Block(
                    dim=embed_dims[i], mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j],norm_cfg=norm_cfg)
                    for j in range(depths[i])])
                norm = norm_layer(embed_dims[i])
                cur += depths[i]
    
                setattr(self, f"patch_embed{i + 1}", patch_embed)
                setattr(self, f"block{i + 1}", block)
                setattr(self, f"norm{i + 1}", norm)
            
            self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    
        def forward(self, x):
            B = x.shape[0]
            outs = []
            for i in range(self.num_stages):
                patch_embed = getattr(self, f"patch_embed{i + 1}")
                block = getattr(self, f"block{i + 1}")
                norm = getattr(self, f"norm{i + 1}")
                x, H, W = patch_embed(x)
                for blk in block:
                    x = blk(x)
                x = x.flatten(2).transpose(1, 2)
                x = norm(x)
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
                outs.append(x)
            return outs
    
    
    class DWConv(nn.Module):
        def __init__(self, dim=768):
            super(DWConv, self).__init__()
            self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
    
        def forward(self, x):
            x = self.dwconv(x)
            return x
    
    def update_weight(model_dict, weight_dict):
        idx, temp_dict = 0, {}
        for k, v in weight_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                idx += 1
        model_dict.update(temp_dict)
        print(f'loading weights... {idx}/{len(model_dict)} items')
        return model_dict
    
    def lsknet_t(weights=''):
        model = LSKNet(embed_dims=[32, 64, 160, 256], depths=[3, 3, 5, 2], drop_rate=0.1, drop_path_rate=0.1)
        if weights:
            model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['state_dict']))
        return model
    
    def lsknet_s(weights=''):
        model = LSKNet(embed_dims=[64, 128, 256, 512], depths=[2, 2, 4, 2], drop_rate=0.1, drop_path_rate=0.1)
        if weights:
            model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['state_dict']))
        return model
    
    if __name__ == '__main__':
        model = lsknet_t('lsk_t_backbone-2ef8a593.pth')
        inputs = torch.randn((1, 3, 640, 640))
        for i in model(inputs):
            print(i.size())
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201

    yolo.py文件修改

    def parse_model(d, ch):  # model_dict, input_channels(3)
        # Parse a YOLOv5 model.yaml dictionary
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
        if act:
            Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        is_backbone = False
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            try:
                t = m
                m = eval(m) if isinstance(m, str) else m  # eval strings
            except:
                pass
            for j, a in enumerate(args):
                with contextlib.suppress(NameError):
                    try:
                        args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                    except:
                        args[j] = a
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in {
                    Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                    BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            # TODO: channel, gw, gd
            elif m in {Detect, Segment}:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
                if m is Segment:
                    args[3] = make_divisible(args[3] * gw, 8)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            elif isinstance(m, str):
                t = m
                m = timm.create_model(m, pretrained=args[0], features_only=True)
                c2 = m.feature_info.channels()
            # elif m in {}:
            #     m = m(*args)
            #     c2 = m.channel
            else:
                c2 = ch[f]
            if isinstance(c2, list):
                is_backbone = True
                m_ = m
                m_.backbone = True
            else:
                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
                t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            if isinstance(c2, list):
                ch.extend(c2)
                for _ in range(5 - len(ch)):
                    ch.insert(0, 0)
            else:
                ch.append(c2)
        return nn.Sequential(*layers), sorted(save)
    
    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106

    yaml文件修改

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # 0-P1/2
    # 1-P2/4
    # 2-P3/8
    # 3-P4/16
    # 4-P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, vovnet39a, [False]], # 4
       [-1, 1, SPPF, [1024, 5]],  # 5
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]], # 6
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
       [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
       [-1, 3, C3, [512, False]],  # 9
    
       [-1, 1, Conv, [256, 1, 1]], # 10
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
       [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
       [-1, 3, C3, [256, False]],  # 13 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]], # 14
       [[-1, 10], 1, Concat, [1]],  # cat head P4 15
       [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]], # 17
       [[-1, 5], 1, Concat, [1]],  # cat head P5 18
       [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)
    
       [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
  • 相关阅读:
    【BOOST C++Data-struct专题04】 Boost.PropertyTree
    使用 SQL 的方式查询消息队列数据以及踩坑指南
    字符串_哈希
    后端程序员入门react笔记(五)ajax请求
    chatGPT 使用随想
    MySQL安装教程及CentOS7离线安装步骤详解
    golang map 并发读写 sync.Map 实现原理
    深度剖析js闭包
    100ms的SQL把服务器搞崩溃了
    VScode中js关闭烦人的ts检查
  • 原文地址:https://blog.csdn.net/DM_zx/article/details/133364011