• postgres源码解析56 Brin Index--3(update/delete/insert流程)


      经过前两篇文章对brin index的讲解, 对brin index的构建更深入的认识,这些内容是理解索引更新流程的重点,相关知识点见postgres源码解析54 Brin Index–1   postgres源码解析55 Brin Index–2(brinbuild流程)。由于brin index是块范围索引,因此在插入、更新或者删除操作时,并不会实时进行维护索引信息;如下图,插入12与删除12均不会影响第三个brin index,可能会对统计信息产生影响,并不会影响数据正确性。

    在这里插入图片描述

    只有插入或者更新的数据超出原brin index边界范围内,才会触发更新动作。涉及的重点函数为 brininsert --> brin_form_tuple --> brin_doupdate --> PageIndexTupleOverwrite

    brininsert

    1 首先调用 brinRevmapInitialize函数初始brin index 映射页的访问对象BrinRevmap;
    2 确定插入的heap元组落在哪个pagesPerRange,后续的更新操作均落在此页域中;
    3 调用 brinGetTupleForHeapBlock获取该页域对应的磁盘形式brin index索引brtup;
    4 如果brtup为空,退出循环
    5 紧接着调用brin_deform_tuple函数将磁盘形式的brin index 转换成内存形式BrinMemTuple;
    6 依次遍历索引元组的所有属性,判断插入堆元组数值是否落在索引元组区间内;如果在此区间内,设置标识need_insert 为false;如果超出此区间,则将发生变动的值更新至BrinMemTuple中,并设置标识need_insert 为true;
    7 如果need_insert为false, 则释放锁资源;
    8 调用 brin_copy_tuple函数拷贝brtup作为副本origtup,避免长时间持有锁;
    9 然后将BrinMemTuple转换成磁盘形式brin index元组,判断是否可以同页更新,设置samepage标识;
    10 释放缓冲块共享锁,调用brin_doupdate函数进行真正地更新操作;
    11最后释放锁资源和内存资源。
    在这里插入图片描述

    brin_deform_tuple

    该函数是将brin tuple从磁盘格式装换成内存格式,真正的实现函数为brin_deconstruct_tuple。
    注:为避免在一循环中多次调用此函数频繁申请内存BrinMemTuple,提出一个优化手段。重复使用先前申请的内存BrinMemTuple,只需进行简单的初始化工作即可,测试验证此优化十分高效。
    1 根据入参dMemtuple判断是否重用BrinMemTuple内存,可重用则只需进行简单地初始化工作,反之需要申请BrinMemTuple内存空间用于装载磁盘形式brin tuple数值信息。
    2 获取tuple的数据域头部地址tp,判断tuple是否存在NULL值;若存在则需要获取tuple的bitmap地址nullbits;
    3 调用brin_deconstruct_tuple函数将磁盘形式的brin tuple转换为内存形式。期执行流程如下:

    /*
     * brin_deconstruct_tuple
     *		Guts of attribute extraction from an on-disk BRIN tuple.
     *
     * Its arguments are:
     *	brdesc		BRIN descriptor for the stored tuple
     *	tp			pointer to the tuple data area
     *	nullbits	pointer to the tuple nulls bitmask
     *	nulls		"has nulls" bit in tuple infomask
     *	values		output values, array of size brdesc->bd_totalstored
     *	allnulls	output "allnulls", size brdesc->bd_tupdesc->natts
     *	hasnulls	output "hasnulls", size brdesc->bd_tupdesc->natts
     *
     * Output arrays must have been allocated by caller.
     */
    static inline void
    brin_deconstruct_tuple(BrinDesc *brdesc,
    					   char *tp, bits8 *nullbits, bool nulls,
    					   Datum *values, bool *allnulls, bool *hasnulls)
    {
    	int			attnum;
    	int			stored;
    	TupleDesc	diskdsc;
    	long		off;
    
    	/*
    	 * First iterate to natts to obtain both null flags for each attribute.
    	 * Note that we reverse the sense of the att_isnull test, because we store
    	 * 1 for a null value (rather than a 1 for a not null value as is the
    	 * att_isnull convention used elsewhere.)  See brin_form_tuple.
    	 */
    	for (attnum = 0; attnum < brdesc->bd_tupdesc->natts; attnum++)
    	{
    		/*
    		 * the "all nulls" bit means that all values in the page range for
    		 * this column are nulls.  Therefore there are no values in the tuple
    		 * data area.
    		 */
    		allnulls[attnum] = nulls && !att_isnull(attnum, nullbits);
    
    		/*
    		 * the "has nulls" bit means that some tuples have nulls, but others
    		 * have not-null values.  Therefore we know the tuple contains data
    		 * for this column.
    		 *
    		 * The hasnulls bits follow the allnulls bits in the same bitmask.
    		 */
    		hasnulls[attnum] =
    			nulls && !att_isnull(brdesc->bd_tupdesc->natts + attnum, nullbits);
    	}
    
    	/*
    	 * Iterate to obtain each attribute's stored values.  Note that since we
    	 * may reuse attribute entries for more than one column, we cannot cache
    	 * offsets here.
    	 */
    	diskdsc = brtuple_disk_tupdesc(brdesc);
    	stored = 0;
    	off = 0;
    	for (attnum = 0; attnum < brdesc->bd_tupdesc->natts; attnum++)
    	{
    		int			datumno;
    
    		if (allnulls[attnum])
    		{
    			stored += brdesc->bd_info[attnum]->oi_nstored;
    			continue;
    		}
    
    		for (datumno = 0;
    			 datumno < brdesc->bd_info[attnum]->oi_nstored;
    			 datumno++)
    		{
    			Form_pg_attribute thisatt = TupleDescAttr(diskdsc, stored);
    
    			if (thisatt->attlen == -1)
    			{
    				off = att_align_pointer(off, thisatt->attalign, -1,
    										tp + off);
    			}
    			else
    			{
    				/* not varlena, so safe to use att_align_nominal */
    				off = att_align_nominal(off, thisatt->attalign);
    			}
    
    			values[stored++] = fetchatt(thisatt, tp + off);
    
    			off = att_addlength_pointer(off, thisatt->attlen, tp + off);
    		}
    	}
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    brin_doupdate

    brin_doupdate 该函数的主要功能是更新旧元组,有两种场景,在同一页更新还是非同页更新
    1 首先判断索引元组是否大于最大索引元组阈值,如果是则打印错误信息并返回false;
    2 如果samepage为false,则找到可以容纳待插元组的索引页,并载入内存newbuf且设置extended标识;
     1)如果没有可用内存块,则返回false;
     2)如果newbuf == oldbuf,说明oldbuf含有足够的空间容纳待插元组;
    3 获取oldbuf的缓冲块排它锁,设置extended为false;
    4 读取oldbuf对应的数据页oldpage和旧元组对应的item信息;
    5 如果oldpage不是常规的索引页/item非法/item状态不正常,则释放排它锁,
     1)如果newbuf有效,
      1.1如果extended为true,则初始化该newbuf对应的数据页;
      1.2释放newbuf上的锁资源(content lock和pin lock);
      1.3更新索引表的FSM信息;
     2)newbuf无效,返回false;
    6 如果旧元组内容发生变化,则先释放oldbuf的缓冲块排它锁;
     1)如果newbuf有效,
      1.1如果extended为true,则初始化该newbuf对应的数据页;
      1.2释放newbuf上的锁资源(content lock和pin lock);
      1.3更新索引表的FSM信息;
     2)newbuf无效,返回false;
    7 如果是同页更新,则;
    临界区
     1)调用PageIndexTupleOverwrite函数执行更新操作
       更新失败,打印错误信息并退出
     2)将oldbuf标记为脏,需持有缓冲块排它锁防止其他进程进行刷盘操作,引发写入脏数据的风险;
     3)构建XLOG日志(XLOG_BRIN_SAMEPAGE_UPDATE),更新oldpage的lsn信息;
    临界区
     4)释放oldbuf的缓冲块排它锁;
     5)如果newbuf无效,返回false,反之进行如下步骤:
      1.1如果extended为true,则初始化该newbuf对应的数据页;
      1.2释放newbuf上的锁资源(content lock和pin lock);
      1.3更新索引表的FSM信息;
     6)返回true;
    8 如果newbuf无效,则释放oldbuf的缓冲块排它锁,返回false;
    9 步骤7-8均不满足时,则说明oldpage没有空间容纳待插入元组,需要newbuf执行更新插入操作,流程如下:
     1)首先获取newabuf对应的索引映射revmappage页并将其载入revmapbuf;
    临界区
     2)如果extended标识为true,则初始化一个新的索引常规页newpage;
     3)紧接着将索引元组从oldpage中删除,将其对应的itemdata设置为unused状态;
     4)调用PageAddItem函数将待插索引元组插入newpage中,并返回其item偏移量newoff;
     5)如果newoff无效,则报错失败退出;
     6)设置oldbuf、newbuf为脏状态;
     7)将插入的索引元组物理地址信息封装成TID插入到映射页中,并标记revmapbuf为脏状态;
     8)构建XLOG日志,更新oldpage、newpage、revmappage的lsn信息;
    临界区
     9)释放锁资源,并更新索引表对应的FSM信息,最后返回true。

    PageIndexTupleOverwrite 函数

    在Brin index页替换指定索引
    1 首先进行安全性检查,判断索引页是否损坏或者元组偏移量offnum是否合法;
    2 然后计算新元组与旧元组的尺寸大小size_diff,然后重新移动目标元组前的所有元组,并更新offset指针;
    3 最后将新索引元组插入到更新后的offset位置。

    场景1:删除的元素不是最后一个ItenId指向的索引元组
     仅回收索引元组,而ItenidData设置为UNUSED转态
    在这里插入图片描述
    场景2:删除的元素是最后一个ItenId指向的索引元组
     ItemidData和索引元组空间都回收
    在这里插入图片描述

    /*
     * PageIndexTupleOverwrite
     *
     * Replace a specified tuple on an index page.
     *
     * The new tuple is placed exactly where the old one had been, shifting
     * other tuples' data up or down as needed to keep the page compacted.
     * This is better than deleting and reinserting the tuple, because it
     * avoids any data shifting when the tuple size doesn't change; and
     * even when it does, we avoid moving the line pointers around.
     * Conceivably this could also be of use to an index AM that cares about
     * the physical order of tuples as well as their ItemId order.
     *
     * If there's insufficient space for the new tuple, return false.  Other
     * errors represent data-corruption problems, so we just elog.
     */
    bool
    PageIndexTupleOverwrite(Page page, OffsetNumber offnum,
    						Item newtup, Size newsize)
    {
    	PageHeader	phdr = (PageHeader) page;
    	ItemId		tupid;
    	int			oldsize;
    	unsigned	offset;
    	Size		alignednewsize;
    	int			size_diff;
    	int			itemcount;
    
    	/*
    	 * As with PageRepairFragmentation, paranoia seems justified.
    	 */
    	if (phdr->pd_lower < SizeOfPageHeaderData ||
    		phdr->pd_lower > phdr->pd_upper ||
    		phdr->pd_upper > phdr->pd_special ||
    		phdr->pd_special > BLCKSZ ||
    		phdr->pd_special != MAXALIGN(phdr->pd_special))
    		ereport(ERROR,
    				(errcode(ERRCODE_DATA_CORRUPTED),
    				 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
    						phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
    
    	itemcount = PageGetMaxOffsetNumber(page);
    	if ((int) offnum <= 0 || (int) offnum > itemcount)
    		elog(ERROR, "invalid index offnum: %u", offnum);
    
    	tupid = PageGetItemId(page, offnum);
    	Assert(ItemIdHasStorage(tupid));
    	oldsize = ItemIdGetLength(tupid);
    	offset = ItemIdGetOffset(tupid);
    
    	if (offset < phdr->pd_upper || (offset + oldsize) > phdr->pd_special ||
    		offset != MAXALIGN(offset))
    		ereport(ERROR,
    				(errcode(ERRCODE_DATA_CORRUPTED),
    				 errmsg("corrupted line pointer: offset = %u, size = %u",
    						offset, (unsigned int) oldsize)));
    
    	/*
    	 * Determine actual change in space requirement, check for page overflow.
    	 */
    	oldsize = MAXALIGN(oldsize);
    	alignednewsize = MAXALIGN(newsize);
    	if (alignednewsize > oldsize + (phdr->pd_upper - phdr->pd_lower))
    		return false;
    
    	/*
    	 * Relocate existing data and update line pointers, unless the new tuple
    	 * is the same size as the old (after alignment), in which case there's
    	 * nothing to do.  Notice that what we have to relocate is data before the
    	 * target tuple, not data after, so it's convenient to express size_diff
    	 * as the amount by which the tuple's size is decreasing, making it the
    	 * delta to add to pd_upper and affected line pointers.
    	 */
    	size_diff = oldsize - (int) alignednewsize;
    	if (size_diff != 0)
    	{
    		char	   *addr = (char *) page + phdr->pd_upper;
    		int			i;
    
    		/* relocate all tuple data before the target tuple */
    		memmove(addr + size_diff, addr, offset - phdr->pd_upper);
    
    		/* adjust free space boundary pointer */
    		phdr->pd_upper += size_diff;
    
    		/* adjust affected line pointers too */
    		for (i = FirstOffsetNumber; i <= itemcount; i++)
    		{
    			ItemId		ii = PageGetItemId(phdr, i);
    
    			/* Allow items without storage; currently only BRIN needs that */
    			if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
    				ii->lp_off += size_diff;
    		}
    	}
    
    	/* Update the item's tuple length (other fields shouldn't change) */
    	ItemIdSetNormal(tupid, offset + size_diff, newsize);
    
    	/* Copy new tuple data onto page */
    	memcpy(PageGetItem(page, tupid), newtup, newsize);
    
    	return true;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
  • 相关阅读:
    如何解决 npm ERR! Cannot read properties of null (reading ‘pickAlgorithm‘)报错问题
    钟汉良日记:2年10个月后第一次坐车回家
    WISE 2019 | ML-GCN:多标签图节点分类的半监督图嵌入
    公司员工微信如何管理?
    LeetCode之二叉树
    JS DataTable中导出PDF右侧列被截断的问题解决
    多线程与高并发(13)——Java常见并发容器总结
    HCIP之BGP路由反射器、联邦
    Mybatis的二级缓存 (ehcache方式)
    Wireshark抓包:理解TCP三次握手和四次挥手过程
  • 原文地址:https://blog.csdn.net/qq_52668274/article/details/132689575